Ansar State High School
Mathematics Department
Name: / Academic year: / 2009-2010Class: / Grade 10 / Duration: / 120 minutes
Subject: / Mathematics Mid Year Exam / Date: / Feb ,2010
The test consists of five questions. The use of non programmable calculators is allowed.
Exercise1: (2.5 points)
choose the correct answer , and justify
A / B / C
1 / = / / /
2 / / 1 / /
3 / / / / Doesn’t exist
4 / If ,then / / /
5 / If – 2< a < -1 and 4< b< 5 , then: / -5< ab< -8 / -8 < ab < -5 / -10 < ab < -4
Exercise2: (4.5 points)
We registered the number of books read by a group of 100 students.
Number of books read(xi) / 0 / 1 / 2 / 3 / 4 / 5 / 6Frequency(ni) / 23 / 36 / 17 / 14 / 4 / 4 / 2
We obtained the following results:
- What is the population of this series? the variable and its nature?
- What is the mode? the range?
- What is the median? Give an interpretation of this result.
- Determine the frequency of the students who read:
a. at least 4 books.b. less than 3 books.
Exercise3: (4 points)
Let A=
- Show that A=1-
- Show that if -, then
- Frame |A|
- Solve |A|=1.
Exercise 4: (4.5points)
- Un arc, est compris entre - et 0, vérifie la relation: 3cot x = -4.
a- Calculer la valeur de sinx, cosx et tanx.
b- Déduire la valeur numérique de cette expression
F = 4 tan(3+x) – 6sin (-x) – 2cos(x-
- Prouver cette identité:
Tan2 + cot2+2 =
- Let g be a function defined, over IR, by g(x) = cos3x + sin3x.
1-Calculate and .
2-Find .
Exercise 5: (5.5points)
ABCD is a rectangle. O is the meeting point of the diagonals [AC] and [BD].
I and J are two points such that = and =
Let M and N be the mid points of [DC] and [BC] respectively.
PART A:
- Plot I and J.
- a) Write each of the two vectors and as a linear combination of and .
b) Deduce that DIBJ is a parallelogram.
Prove that: a) + =.
b) + =.
Prove that: + =.
Deduce that the points M, J, and N are collinear.
PART B:
Assume that the plane is reported to the system: (A,,).
- Find the coordinates of A, B, C, D, I and J.
- Deduce again That DIBJ is a parallelogram.
- Verify again the result of part 5.
Bareme(over 25)
№ / Parts / Answers / Mark 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 / 1) / C / (0.5 Points)
2) / A / ( 0.5Points)
3) / B / ( 0.5Points)
4) / C / ( 0.5Points)
5) / A / ( 0,5points)
2 / 1) / 35 students,grades,quantitative / (0.5;0.25;0.25 Points)
2) / X==7,y=35-30=5 / (0.5;0.5Points)
3) / Table
Grades / 35 / 42 / 50 / 63 / 83 / 90 / 97
Frequency / 3 / 5 / 10 / 7 / 5 / 3 / 2
Increasing
Frequency / 3 / 8 / 18 / 25 / 30 / 33 / 35
/ (1Point)
4) / Graph+Histogram / (0.5:0.5points)
5) / Range26:,Mode50,Median50 / (0.25;0.25;
0.25points)
6) / (0.25;0.25points)
7) / =68.57% / (0.75 Points)
1) / Sinx=,Cosx=,tanx=-1,E= / (0.5;0.5;0.25;0.25 Points)
2) / a) / 1/2 / (0.5;0.5;0.5;1points)
b) / 2
c) / 0
d) / Sinx==cosx
3) / a) / x0 / (0.5;0.5;0.5;1points)
b) / No solution
c) /
d) / |x+2|=3x, x=1, or x=-
4) / Framing / (0.5;0.5 Points)
4 / 1) / Construction / ( 1.5Points)
2) / a) / = / (0.75 Points)
b) / = / (0.75 points)
c) / ,so collinear / (1 point)
5 / 1) / D(-2;-5) / ( 1point)
2) / F(9;0) / ( 1point)
3) / G(-2/3;1/3) / ( 0.5points)
4) / 1 / (0.5 points)
5) / a) / A(-3;2) and C(5;6) / (0.5;0.5 points)
b) / =(8;4).the same in any system / ( 1point)