Programming Logic and Design[i]

Preface

This book can be used in a stand-alone logic course or as a companion book to an introductory programming text using any programming language.

Chapter 1 introduces concepts

Chapter 2 discusses key concepts of structure

Chapter 3 extends the structure discussion to modules

Chapter 4 creates complete structured business programs

Chapter 5 explores decision-making and Boolean logic

Chapter 6 discusses looping

Chapter 7 introduces control breaks

Chapter 8 introduces arrays

Chapter 9 deals with arrays used for sorting

Chapter 10 explores interactive programming using menus

Chapter 11 covers matching and sequential processing

Chapter 12 addresses object-oriented programming

Chapter 13 addresses event-driven programming and GUI

Chapter 14 addresses good programming design in terms of reducing coupling and increasing cohesion

Chapter 15 provides an introduction to UML, a graphical tool for designing object-oriented systems

Each chapter includes

Objectives: A useful study aid

Tips: Alternatives methods and terms

Summaries: Recaps the programming concepts and techniques covered

Exercises: Exercises increasing in difficulty designed to provide additional practice in skills and concepts

Chapter One: An Overview of Computers and Logic

Objectives:

  1. Understand components and operations
  2. Describe programming process
  3. Describe data hierarchy
  4. Understand flowchart symbols
  5. Understand pseudocode statements
  6. Use and name variables
  7. Understand sentinel variables
  8. Describe data types
Key terms:

Data: facts entering the computer system

CPU: Hardware that organizes data, checks for accuracy, performs mathematical calculations on data

Programming Language: Basic, Visual Basic, Pascal, COBOL, RPG, C#, C++, Java, Fortran

Syntax: rules governing word usage and punctuation

Compiler (or Interpreter): software to translate the specific programming language into the computer’s on-off circuitry language

Machine Code: the computer’s on-off circuitry language

Logic (of a program): the instructions given to a computer in a specific sequence

Algorithm: the steps necessary to solve any problem

Conversion: the entire set of actions an organization must take to switch over to using a new program

Flowcharts: pictorial representation of the logical steps it takes to solve a problem

Pseudocode: an English-like representation of the steps it takes to solve a problem

Variables: memory locations whose contents can vary or differ over time

Decision: testing a value

Dummy Variable: pre-selected value that stops execution of a program

EOF: end of file (of data)

Constants: named memory location, the value of which never changes during a program (numeric or string)

Computer System Components
  1. Hardware: equipment or devices associated with a computer
  2. Software: instructions that tell the computer what to do
Major Operations
  1. Input
  2. Processing
  3. Output
  4. Storage

Every computer operates on circuitry that consists of millions of on-off switches

The compiler or interpreter tells you if you have used a programming language incorrectly

For a program to work correctly, you must not leave any instructions out or add extraneous instructions

Logic errors are much more difficult to locate than syntax errors

Once instructions have been input to the computer and translated to machine language, a program can be run or executed.

Computers often have several input devices such as a keyboard, a mouse, a CD drive or a disk drive

Disk and CD drives are often categorized as storage rather than input devices

Storage

1)Internal storage

a)Memory

i)Main memory / primary memory

2)External storage

a)Floppy disk

b)Hard drive

c)Magnetic tape

Internal memory is volatile, i.e. contents are lost every time the computer loses power

External storage is permanent, i.e. non-volatile storage

Computer memory consists of millions of numbered locations where data can be stored

Programming Steps

1)Understand the problem

2)Plan the logic – developing an algorithm

3)Code the program

4)Translate the program into machine language

5)Test the program

6)Put the program into production

7)Maintaining a program

8)Retiring a program

Understanding the problem may be one of the most difficult aspects of programming:

The description of what the user needs may be vague

User may not know what it is he or she wants

Planning the logic entails deciding on the steps to include and how to order them

Utilizes flowcharts or pseudo-code

Is more difficult than coding the program

Compilers and interpreters translate high-level languages into low-level languages, i.e. machine language

A program that is free of syntax errors is not necessarily free of logical errors

Programs should be tested with many sets of data

Many companies don’t know that their software has a problem until an unusual circumstance occurs

Maintenance is necessary for a number of reasons

1)Changes in the environment

2)Changes in specifications

3)Formats of input change

4)Errors are found

Data Hierarchy

Bits

Bytes

Characters – smallest usable unit of data

Fields – a single data item

Records – logical groupings of fields

Files – logical grouping of records

Tables – groups of files that together serve the needs an organization

Databases – organized groupings of files in table form

Using pseudocode is similar to writing final statements in a programming language

Flowcharts allow a programmer to more easily visualize how the program statements will connect

Programmers seldom create both pseudocode and a flowchart for the same program

Almost every program involves the steps of input, processing and output

When you crate a flowchart, you draw geometric shapes around the individual statements and connect them with arrows

A parallelogram represents input

A rectangle represents processing, i.e. such as performing arithmetical calculations

Parallelograms are also used for output

A terminal or start/stop symbol is used at each end

A diamond is used as a decision symbol is used for branching

A connector is often used on longer flowcharts

Looping will allow a program to do repetitive calculations

It is the ability of memory variables to change in value that makes computers and programming worthwhile

Because one memory location can be used over and over again with different values, you can write program instructions once and then use them for thousands of separate calculations

Most languages allow both letters and digits within variable names

Different languages put different limits on the length of variable names

Newer languages tend to be case-sensitive

Most languages use camel casing where multiple words are run together with each new word being capitalized

Variable naming rules (for this book)

Must be one word

Names should have some appropriate meaning

Variable names may not begin with a digit

All good computer questions have two mutually exclusive answers like yes or no or true or false

Sentinel values represent an entry or exit point for a program

Programming languages can recognize the end of data in file automatically without using a sentinel value through a code that is stored at the end of the data.

Connectors should contain a letter or number that can be matched with another location

Avoid using connectors whenever possible.

Most computer languages allow a shorthand expression for assignment statements that give variables values

Whatever operation is performed to the right of the equal sign results in the value that is placed in the memory location named to the left of the equal sign

It might help to imagine the word “let” in front of an assignment statement

It makes no sense to perform mathematical operations on memory locations, but it does make sense to perform them on the contents of memory locations

Many programming languages allow you to create constants

Some languages require single quotes surrounding character constants while others require double quotes.

Programmers must distinguish between numeric and character variables because computers handle the two types of data differently, i.e. you cannot perform numeric calculations on string data.

Finer distinctions may exist in some languages, such as those between integer and floating-point variables

Literals are generally represented between quotation marks to distinguish them from variable names

Summary

1)Together, hardware and software accomplish input, processing, output, and storage.

2)A programmer’s job involves understanding the problem, planning the logic, coding the program, translating the program into machine language, testing the program and putting the program into production

3)Data is stored in a hierarchy of characters, fields, records, and files

4)Pseudocode and flowcharts are used to plan logic

5)Variables are named memory locations. All variable names must be written as one word without embedded spaces and should mean something

6)Testing a value means making a decision. All computer decisions include discreet values

7)Most languages allow the equal sign to assign values to variables. Assignment always takes place from right to left

8)Programmers must distinguish between numeric and character variables

Chapter Two: Understanding Structure

Objectives:

1)Understand what makes spaghetti code

2)Describe three basic structures making up structured programs

3)Understand primary reads

4)Recognize structure

Key terms:

Spaghetti Code: snarled program statements due to lack of structure

Unstructured code results in programs that may work, but are very difficult to read, with logic that is difficult to follow

Understanding the Three Basic Structures

1)Sequence – performing an action and then the next action in order

2)Selection – ask a question and depending on the answer, you take one of two courses of action. No matter which path you follow, you continue on with the next event.

3)Looping – you ask a question; if he answer requires an action, you perform the action and ask the original question again. This continues until the answer to the questions is such that the action is no longer required.

Any program, no matter how complicated, can be constructed using only three sets of flowcharting shapes or structures; each basic unit of programming logic is a sequence, a selection or a loop

Selection is called the if-then-else structure

A single alternative if structure also exists. The case where nothing is done on a branch is called the null case.

Looping represents repetition or iteration.

The three basic structures can be combined in an infinite number of ways.

Attaching structures end-to-end is called stacking

Placing a structure within another structure is called nesting

Aligning steps vertically in pseudocode shows that they are “on the same level”

Dependent steps are indented, showing they are “one level down”

In pseudocode, endif always partners with the most recent if

Each structure has only one entry and one exit point

Structured Programs

1)Includes only three types of structures

2)Structures connect to one another only at their entrance or exit points

3)With a sequence, each step must follow without any opportunity to branch away

a)Sequences never have decisions in them

4)With a selection, logic goes in one of two directions after the question; then the flow comes back together

a)The question is not asked a second time

5)In a loop, if the question result in the procedure executing, then the logic returns to the question that started the loop

a)The question is always asked again

b)The loop must go back directly to the question to be considered structured

i)The last step executed in the loop alters the condition tested in the question that begins the loop, e.g. EOF

For a program to be structured and also work the way you want it to, sometimes you need to add extra steps

1)The priming read (or priming input) is one kind of added step

a)Read in a separate statement

b)Purpose is to control the upcoming loop

Reasons for Structure

1)Clarity

2)Professionalism

3)Efficiency

4)Maintenance

5)Modularity

When analyzing a flowchart, if a line is attached somewhere else, untangle it by repeating the step that is tangled

Two Special Structures: Case and Do-Until

You can solve any logic problem with the sequencing, selection, and looping

Many languages allow two more structures:

1)Case structure

a)Test a variable against a series of values, taking appropriate action based upon the variable’s value

b)Easier to read

c)A convenience, the computer still makes a series of individual decisions

2)Do-until

a)In a do-while, you may never enter the loop

b)A do-until ensures that procedures execute at least once

c)You can create the same sequence generated by a do-until loop by creating a sequence followed by a do-WHILE loop

Summary

1)Clearer programs can be constructed using sequences, selections and loops connected in an infinite number of ways

a)Each structure has one entry and one exit point

2)A priming read is the step prior to beginning a structured loop

a)The last step in the loop gets the next and all subsequent input values

3)You can use a case structure when here are several distinct possible values for a variable you are testing; the computer continues to treat them as individual decisions

4)A do-until ensures that procedures execute at least once

Chapter Three: Modules, Hierarchy Charts and Documentation

Chapter Four: Writing a Complete Program

Chapter Five: Making Decisions

Chapter Six: Looping

Chapter Seven: Control Breaks

Chapter Eight: Arrays

Chapter Nine: Advanced Array Manipulation

Chapter Ten: Using Menus and Validating Input

Chapter Eleven: Sequential File Merging, Matching and Updating

Chapter Twelve: Advanced Modularization Techniques and Object Oriented Programming

Chapter Thirteen: Programming Graphical User Interfaces

Chapter Fourteen: Program Design

Chapter Fifteen: System Modeling with UML

Appendix A: A Difficult Structuring Problem

Appendix B: Using a Large Decision Table

Index

[i] Farrell, Joyce. “Programming Logic and Design”, Comprehensive Second Edition, Copyright 2002: Course Technology, a division of Thompson Learning.