Gene / Mutations increase risk for: / References
APC /
  • Adenomatous Polyposis Syndrome (colon)
  • Turcot syndrome (colon)
  • Colon cancer
  • Stomach (gastric) cancers
  • Gardner syndrome (colon)
/ 1, 2, 3
2, 5
2, 4
2, 7
6
ATM /
  • Breast cancer
  • Stomach (gastric) cancers
  • Pancreas cancer
  • Ovarian cancer
/ 2, 10, 15
2, 11
2, 13
2, 15
BARD1 /
  • Breast cancer
/ 2, 16
BMPR1A /
  • Juvenile Polyposis Syndrome (colon)
  • Colorectal cancer
/ 1, 2, 17
1, 18
BRAF / ● Ovarian cancer / 2, 149
BRCA1 /
  • Breast cancer
  • Ovarian cancer
  • Male breast cancer
  • Pancreatic cancer
  • Prostate cancer
/ 1, 23, 24
1, 23, 24, 26
1, 23, 25
1, 2, 23, 28
23, 27
BRCA2 /
  • Breast cancer
  • Ovarian cancer
  • Male breast cancer
  • Pancreatic cancer
  • Prostate cancer
  • Melanoma
/ 1, 23, 24
1, 23, 24, 26
1, 23, 25
1, 2, 23, 28
23, 27
2, 33
BRIP1 /
  • Breast cancer
/ 2, 34
CDH1 /
  • Breast cancer
  • Hereditary diffuse gastric cancer
  • Colorectal cancer
  • Ovarian cancer
  • Prostate cancer
/ 1, 2, 36
1,2, 36
1, 37
2, 39
2, 40
CDK4 /
  • Cutaneous malignant melanoma
/ 2, 42
CDKN2A /
  • Cutaneous malignant melanoma 2
  • Melanoma astrocytoma syndrome
  • Melanoma-pancreatic cancer syndrome
/ 2, 43
2, 44
2, 45
CHEK2 /
  • Breast cancer
  • Li-Fraumeni syndrome (colon)
  • Prostate cancer
  • Colon cancer
  • Ovarian cancer
/ 2, 46, 49
2, 47
2, 38
2, 51
2, 53
EGFR /
  • Anal cancer

  • Epithelial ovarian cancer

/ 56, 57
58, 59
ELAC2 /
  • Prostate cancer, hereditary
/ 2, 62, 63
EPCAM /
  • Lynch syndrome
/ 2, 65, 66
HRAS1 / • Breast cancer / 2, 150
KRAS /
  • Pancreatic cancer
  • Colorectal cancer
/ 2, 74, 75
2, 77
MLH1 /
  • Lynch syndrome
  • Endometrial cancer
  • Ovarian cancer
/ 1, 2, 79, 82
1, 80
1, 81
MRE11A /
  • Breast & ovarian cancer
/ 2, 151
MSH2 /
  • Lynch syndrome
/ 1, 2, 88, 89
MSH6 /
  • Lynch syndrome
/ 1, 2, 88, 89
MUTYH /
  • Familial adenomatous polyposis (colon)
/ 2, 95, 96
NBN /
  • Breast cancer
  • Prostate cancer
  • Ovarian cancer
  • Melanoma
/ 2, 99
2, 100
2, 101
2, 102
PALB2 /
  • Breast cancer
/ 2, 104, 105, 106
PMS2 /
  • Lynch syndrome
/ 1, 2, 88, 89
PTCH1 /
  • Gorlin syndrome (colon)
  • Breast cancer
  • Colon cancer
/ 2, 101, 111
2, 110
2, 110
PTEN /
  • Cowden syndrome (colon)
  • Prostate cancer
  • Endometrial cancer
  • Melanoma
/ 1, 2, 113
2, 116
2, 117
2, 120
RAD50 /
  • Breast cancer
/ 2, 121, 122
RAD51C /
  • Breast-ovarian cancer
/ 2, 123, 124
RET /
  • Multiple endocrine neoplasia
/ 1, 2, 129
152
SMAD4 /
  • Juvenile polyposis syndrome (colon)
  • Colon cancer
  • Pancreas cancer
/ 1, 2, 134
2, 136
2, 137
STK11 /
  • Breast cancer
  • Melanoma
/ 2, 139
2, 141
TP53 /
  • Breast cancer
  • Li-Fraumeni syndrome (colon)
  • Colorectal cancer
/ 1, 2, 142
1, 2, 144
2, 145

References

  1. Deep sequencing with intronic capture enables identification of an APC exon 10 inversion in a patient with polyposis.Shirts BH et al. Genet Med. 2014 Mar 27
  2. Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer. Fancy SP et al. Nat Neurosci. 2014 Apr;17(4):506-12.
  3. The APC Gene in Turcot's Syndrome. N Engl J Med 1995; 333:524. August 24, 1995.
  4. Mutation analysis of APC gene in gastric cancer with microsatellite instability. Fang DC. World J Gastroenterol. 2002 Oct;8(5):787-91.
  5. Characterization of ATM Gene Mutations in 66 Ataxia Telangiectasia Families. Sandoval n et al. Hum. Mol. Genet. (1999) 8 (1): 69-79.
  6. Rare variants in the ATM gene and risk of breast cancer. Goldgar ED. Breast Cancer Research 2011, 13:R73
  7. Alteration of the ATM gene occurs in gastric cancer cell lines and primary tumors associated with cellular response to DNA damage. Zhang L et al. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. Volume 557, Issue 1, 10 January 2004, Pages 41–51.
  8. Genistein sensitizes bladder cancer cells to HCPT treatment in vitro and in vivo via ATM/NF-κB/IKK pathway-induced apoptosis. Wang Y et al. PLoS One. 2013;8(1):e50175.
  9. ATM mutations in patients with hereditary pancreatic cancer. Robert NJ et al. Cancer Discov. 2012 Jan;2(1):41-6.
  10. ATM polymorphisms and risk of lung cancer among never smokers. Lo YL et al. Lung Cancer. 2010 Aug;69(2):148-54.
  11. Contributions of ATM mutations to familial breast and ovarian cancer. Thorstenson YR et al. Cancer Res. 2003 Jun 15;63(12):3325-33.
  12. Mutation screening of the BARD1 gene: evidence for involvement of the Cys557Ser allele in hereditary susceptibility to breast cancer. KarppinenS-M et al. J Med Genet 2004;41:e114.
  13. BMPR1A mutations in hereditary nonpolyposis colorectal cancer without mismatch repair deficiency. Nieminen TT. Gastroenterology. 2011 Jul;141(1):e23-6.
  14. Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum. Sarkozy A. Hum Mutat. 2009 Apr;30(4):695-702.
  15. Erdheim-Chester Disease Harboring the BRAF V600E Mutation. Blombery P et al. JCO November 10, 2012 vol. 30 no. 32 e331-e332.
  16. Breast Cancer Risk Among Male BRCA1 and BRCA2 Mutation Carriers. Tai YC et al. JNCI J Natl Cancer Inst (2007) 99 (23): 1811-1814.
  17. Salpingo-oophorectomy and the risk of ovarian, fallopian tube, and peritoneal cancers in women with a BRCA1 or BRCA2 mutation.Finch A, Beiner M, Lubinski J, et al. JAMA 2006; 296(2):185–192.
  18. Cancer risks among BRCA1 and BRCA2 mutation carriers. Levy-Lahad E, Friedman E. British Journal of Cancer 2007; 96(1):11–15.
  19. BRCA germline mutations in Jewish patients with pancreatic adenocarcinoma.Ferrone CR, Levine DA, Tang LH, et al. Journal of Clinical Oncology 2009; 27(3):433–438.
  20. The Fanconianaemia/BRCA pathway. D'Andrea AD et al. Nat Rev Cancer. 2003 Jan;3(1):23-34.
  21. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Garcia-Higuera I et al. Mol Cell. 2001 Feb;7(2):249-62.
  22. Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Xia B et al. Nature Genetics 39, 159 - 161 (2006).
  23. A Novel Breast Cancer–Associated BRIP1 (FANCJ/BACH1) Germ-line Mutation Impairs Protein Stability and Function. Nicolo AD et al. Clin Cancer Res July 15, 2008 14; 4672.
  24. Germline E-cadherin gene (CDH1) mutations predispose to familial gastric cancer and colorectal cancer. Richards FM et al. Hum Mol Genet. 1999 Apr;8(4):607-10.
  25. Association between E-cadherin (CDH1) polymorphisms and papillary thyroid carcinoma risk in Han Chinese population. Wang YX et al. Endocrine. 2012 Jun;41(3):526-31.
  26. The E-cadherin (CDH1) −160 C/A polymorphism and prostate cancer risk: a meta-analysis. Qiu LX et al. Eur J Hum Genet. Feb 2009; 17(2): 244–249.
  27. 16q22.1 microdeletion detected by array-CGH in a family with mental retardation and lobular breast cancer. Palka Bayard de Volo C et al. Gene. 2012 May 1;498(2):328-31.
  28. Chapter 22: Li-Fraumeni Syndrome, including Li-Fraumeni-Like Syndrome. Concise Handbook of Familial Cancer Syndromes, Second Edition. Journal of the National Cancer Institute Monographs, No. 38, 2008, pp 48-50.
  29. Mutations in CHEK2 Associated with Prostate Cancer Risk. Dong X et al. Am J Hum Genet. Feb 2003; 72(2): 270–280. Published online Jan 17, 2003.
  30. The CHEK2 gene and inherited breast cancer susceptibility. Nevanlinna H et al. Oncogene (2006) 25, 5912–5919. doi:10.1038/sj.onc.1209877.
  31. CHEK2*1100delC homozygosity in the Netherlands—prevalence and risk of breast and lung cancer. Huijts P EA et al. European Journal of Human Genetics (2014) 22, 46–51.
  32. Germline CHEK2 mutations and colorectal cancer risk: different effects of a missense and truncating mutations? Cybulski C et al. European Journal of Human Genetics (2007) 15, 237–241.
  33. CHEK2 Is a Multiorgan Cancer Susceptibility Gene. Cybulski C et al. Cybulski C et al. Am J Hum Genet. Dec 2004; 75(6): 1131–1135.
  34. EGFR mutations and lung cancer. da Cunha Santos G et al. Annu Rev Pathol. 2011;6:49-69.
  35. EGFR, KRAS, BRAF, and PIK3CA characterization in squamous cell anal cancer. EGFR, KRAS, BRAF, and PIK3CA characterization in squamous cell anal cancer. Martin V et al. HistolHistopathol. 2013 Oct 14.
  36. The Role of EGFR Inhibitors in the Treatment of Metastatic Anal Canal Carcinoma: A Case Series. Muhammad W. Saif et al. Journal of Oncology Volume2011(2011), Article ID125467, 5 pages
  37. The therapeutic potential of targeting the EGFR family in epithelial ovarian cancer.Sheng Q et al. Br J Cancer. 2011 Apr 12;104(8):1241-5.
  38. Targeting the Epidermal Growth Factor Receptor in Epithelial Ovarian Cancer: Current Knowledge and Future Challenges. Siwak DR et al. Journal of Oncology, Volume2010(2010), Article ID568938, 20 pages.
  39. Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. Taylor TE. Curr Cancer Drug Targets. 2012 Mar;12(3):197-209.
  40. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastomamultiforme patients. Heimberger AB. Clin Cancer Res. 2005 Feb 15;11(4):1462-6.
  41. Meta-analysis of associations of the ser217-to-leu and ala541-to-thr variants in ELAC2 (HPC2) and prostate cancer. Camp NJ et al. Am. J. Hum. Genet. 71: 1475-1478, 2002.
  42. Association of HPC2/ELAC2 genotypes and prostate cancer. Rebbeck TR et al. Am. J. Hum. Genet. 67: 1014-1019, 2000.
  43. ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Haack TB et al. Am. J. Hum. Genet. 93: 211-223, 2013.
  44. EPCAM deletion carriers constitute a unique subgroup of Lynch syndrome patients. EPCAM deletion carriers constitute a unique subgroup of Lynch syndrome patients. Ligtenberg MJ et al. Fam Cancer. 2013 Jun;12(2):169-74.
  45. Intractable infant diarrhea with epithelial dysplasia associated with polymalformation. Abely M et al. J. Pediat. Gastroent. Nutr. 27: 348-352, 1998.
  46. Tufting enteropathy and chronic arthritis: a newly recognized association with a novel EpCAM gene mutation. Al-Mayouf SM et al. J. Pediat. Gastroent. Nutr. 49: 642-644, 2009.
  47. HRAS1 variable number of tandem repeats polymorphism and risk of bladder cancer. van Gils CH et al. Int J Cancer. 2002 Aug 1;100(4):414-8.
  48. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Niihori T net al. Nat Genet. 2006 Mar;38(3):294-6.
  49. Roles for KRAS in pancreatic tumor development and progression. diMagliano MP et al. Gastroenterology. 2013 Jun;144(6):1220-9.
  50. KRAS Mutations in Non–Small Cell Lung Cancer. Riely GJ et al. Proceedings of the American Thoracic Society, Vol. 6, No. 2 (2009), pp. 201-205.
  51. Core-binding factor acute myeloid leukemia: can we improve on HiDAC consolidation? Paschka P et al. ASH Education Book December 6, 2013 vol. 2013 no. 1 209-219.
  52. Molecular characterization of endometrial cancer: a correlative study assessing microsatellite instability, MLH1 hypermethylation, DNA mismatch repair protein expression, and PTEN, PIK3CA, KRAS, and BRAF mutation analysis. Peterson LM. Int J GynecolPathol. 2012 May;31(3):195-205.
  53. Analysis of MLH1 and MSH2 expression in ovarian cancer before and after platinum drug-based chemotherapy. Samimi G et al. Clin Cancer Res. 2000 Apr;6(4):1415-21.
  54. Phenotype Comparison of MLH1 and MSH2 Mutation Carriers in a Cohort of 1,914 Individuals Undergoing Clinical Genetic Testing in the United States. Kastrinos F et al. Cancer Epidemiol Biomarkers Prev August 2008 17; 2044.
  55. Methylation of the MLH1 gene in hematological malignancies. Matsushita M. Oncol Rep. 2005 Jul;14(1):191-4.
  56. Human MLH1 deficiency predisposes to hematological malignancy and neurofibromatosis type 1. Ricciardone MD et al. Cancer Res. 1999 Jan 15;59(2):290-3.
  57. MRE11 mutations and impaired ATM-dependent responses in an Italian family with ataxia-telangiectasia -like disorder. Delia D et al. Hum. Molec. Genet. 13: 2155-2163, 2004.
  58. Identification and functional consequences of a novel MRE11 mutation affecting 10 Saudi Arabian patients with the ataxia telangiectasia-like disorder. Farnet M et al. Hum. Molec. Genet. 14: 307-318, 2005.
  59. Muir Torre syndrome and MSH2 mutations: the importance of dermatological awareness. Tischkowitz M et al. British Journal of Cancer (2006) 95, 243–244.
  60. Constitutional mismatch repair deficiency and childhood leukemia/lymphoma--report on a novel biallelic MSH6 mutation. Ripperger T et al. Haematologica. 2010 May;95(5):841-4.
  61. Compound heterozygosity for MSH6 mutations in a pediatric lymphoma patient. Peters A. J PediatrHematolOncol. 2009 Feb;31(2):113-5.
  62. A homozygous MSH6 mutation in a child with café-au-lait spots, oligodendroglioma and rectal cancer. Menko FH et al. Fam Cancer. 2004;3(2):123-7.
  63. The genetics of familial adenomatous polyposis (FAP) and MutYH-associated polyposis (MAP). Claes K et al. ActaGastroenterol Belg. 2011 Sep;74(3):421-6.
  64. Variations in the NBN/NBS1 gene and the risk of breast cancer in non-BRCA1/2 French Canadian families with high risk of breast cancer. Desjardins S et al. BMC Cancer 2009, 9:181.
  65. An inherited NBN mutation is associated with poor prognosis prostate cancer. Cybulski C et al. Br J Cancer. 2013 Feb 5;108(2):461-8.
  66. Molecular genetic analysis of NBS1 in German melanoma patients. Meyer P et al. Melanoma Res. 2007 Apr;17(2):109-16.
  67. Germline variants in MRE11/RAD50/NBN complex genes in childhood leukemia. Mosor M et al. BMC Cancer. 2013 Oct 5;13:457.
  68. A PALB2 Mutation Associated with High Risk of Breast Cancer. Southey MC et al. Breast Cancer Res.2011;12(6):R109.
  69. PMS2 mutations in childhood cancer. De Vos M et al. J Natl Cancer Inst. 2006 Mar 1;98(5):358-61
  70. Differential MSH2 promoter methylation in blood cells of Neurofibromatosis type 1 (NF1) patients. Titze S et al. Eur J Hum Genet. 2010 Jan;18(1):81-7.
  71. Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Muzio LL. Orphanet Journal of Rare Diseases 2008, 3:32.
  72. Heterogeneity of familial medulloblastoma and contribution of germline PTCH1 and SUFU mutations to sporadic medulloblastoma. Slade I et al. Fam Cancer. 2011 Jun;10(2):337-42.
  73. PTEN Mutation Spectrum and Genotype-Phenotype Correlations in Bannayan-Riley-Ruvalcaba Syndrome Suggest a Single Entity With Cowden Syndrome. Marsh DJ et al. Hum. Mol. Genet. (1999) 8 (8): 1461-1472.
  74. Germline mutation of the tumour suppressor PTEN in Proteus syndrome. Smith JM et al. J Med Genet 2002;39:937-940 doi:10.1136/jmg.39.12.937.
  75. Role of PTEN gene in progression of prostate cancer. Pourmand G et al. Urol J. 2007 Spring;4(2):95-100.
  76. PTEN mutation in endometrial cancers is associated with favorable clinical and pathologic characteristics. Risinger JI et al. Clin Cancer Res December 1998 4; 3005.
  77. p53 and PTEN gene mutations in gemistocyticastrocytomas. Watanabe K et al. ActaNeuropathol. 1998 Jun;95(6):559-64.
  78. Identification of PTEN mutations in metastatic melanoma specimens. Celebi JT et al. J Med Genet. Sep 2000; 37(9): 653–657.
  79. Screening for BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD50, and CDH1 mutations in high-risk Finnish BRCA1/2-founder mutation-negative breast and/or ovarian cancer individuals. Kuusisto KM et al. Breast Cancer Research 2011, 13:R20.
  80. Germline RAD51C mutations confer susceptibility to ovarian cancer. Loveday C et al. Nature Genet. 44: 475-476, 2012.
  81. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Meindl A et al. Nature Genet. 42: 410-414, 2010.
  82. Fanconi anemia: at the crossroads of DNA repair. Deakyne JS et al. Biochemistry 76: 36-48, 2011.
  83. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Vaz F et al. Nature Genet. 42: 406-409, 2010.
  84. Hirschsprung Disease in MEN 2A: Increased Spectrum of RET Exon 10 Genotypes and Strong Genotype—Phenotype Correlation. Decker RA et al. Hum. Mol. Genet. (1998) 7 (1): 129-134.
  85. Genetic mutation screening in an italian cohort of nonsyndromicpheochromocytoma/paraganglioma patients. Castellano M et al. Ann N Y Acad Sci. 2006 Aug;1073:156-65.
  86. RET expression in papillary thyroid cancer from patients irradiated in childhood for benign conditions. Collins BJ et al. J ClinEndocrinolMetab. 2002 Aug;87(8):3941-6.
  87. SMAD4 mutations found in unselected HHT patients. Gallione CJ et al. J Med Genet. 2006 Oct;43(10):793-7.
  88. Mutations in DPC4 (SMAD4) cause juvenile polyposis syndrome, but only account for a minority of cases. Houlston R et al. Hum. Mol. Genet. (1998) 7 (12): 1907-1912.
  89. A Restricted Spectrum of Mutations in the SMAD4 Tumor-Suppressor Gene Underlies Myhre Syndrome. Caputo V et al. AJHG Volume 90, Issue 1, p161–169, 13 January 2012.
  90. The SMAD4 Protein and Prognosis of Pancreatic Ductal Adenocarcinoma. Tascilar M et al. Clin Cancer Res December 2001 7; 4115.
  91. Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic and biliary cancers. Su GH et al. Am J Pathol. 1999 Jun;154(6):1835-40.
  92. Germline mutation screening of the STK11/LKB1 gene in familial breast cancer with LOH on 19p. Chen J et al. Clin Genet. 2000 May;57(5):394-7.
  93. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Shackelford DB et al. Cancer Cell. 2013 Feb 11;23(2):143-58.
  94. LKB1/STK11 inactivation leads to expansion of a prometastatic tumor subpopulation in melanoma. Liu W et al. Cancer Cell. 2012 Jun 12;21(6):751-64.
  95. TP53 gene mutations as an independent marker for urinary bladder cancer progression. Ecke TH et al. Int J Mol Med. 2008 May;21(5):655-61.
  96. TP53 mutation in colorectal cancer. Iacopetta B. Hum Mutat. 2003 Mar;21(3):271-6.
  97. Germ-line genetic variation of TP53 in osteosarcoma. Savage SA et al. Pediatr Blood Cancer. 2007 Jul;49(1):28-33.
  98. Anaplastic rhabdomyosarcoma in TP53 germline mutation carriers. HettmerS et al. Cancer. 2014 Apr 1;120(7):1068-75.
  99. TP53 germline mutations in adult patients with adrenocortical carcinoma. Herrmann LJ et al. J ClinEndocrinolMetab. 2012 Mar;97(3):E476-85.
  100. Tagging single-nucleotide polymorphisms in candidate oncogenes and susceptibility to ovarian cancer. Quaye, L; Song, H; Ramus, SJ; Gentry-Maharaj, A; Hogdall, E; DiCioccio, RA. Ovarian CancAssoc Consortium, 2009
  101. Cancer Epidemiol Biomarkers Prev. 2003 Dec;12(12):1528-30.The HRAS1 variable number of tandem repeats and risk of breast cancer.Tamimi RM, Hankinson SE, Ding S, Gagalang V, Larson GP, Spiegelman D, Colditz GA, Krontiris TG, Hunter DJ.
  102. Folkins, A., Longacre, T. (2013). Hereditary gynecological malignancies: advances in screening and treatment. Histopathology,62:2-30.
  103. RET (MEN2) germline polymorphisms were associated with ovarian carcinoma. Hum Genet. 2005 Jul;117(2-3):143-53