Algebra / Geometry III: Unit 7- Conic Sections

SUCCESS CRITERIA:

1.  Be able to identify x & y-intercepts and average rate of change using graphs, tables, & equations.

2.  Be able to identify and describe key features of graphs, tables and equations.

3.  Be able to analyze the transformations of functions given graphs or equations.

INSTRUCTOR: Craig Sherman

Hidden Lake High School

Westminster Public Schools

Conic Sections and Standard Forms of Equations

Aconic sectionis the intersection of a plane and a double right circularcone. By changing the angle and location of the intersection, we can produce different types of conics. There are four basic types:circles,ellipses,hyperbolasandparabolas. None of the intersections will pass through the vertices of the cone.

If the right circular cone is cut by a plane perpendicular to the axis of the cone, the intersection is a circle. If the plane intersects one of the pieces of the cone and its axis but is not perpendicular to the axis, the intersection will be an ellipse. To generate a hyperbola the plane intersects both pieces of the cone without intersecting the axis. And finally, to generate a parabola, the intersecting plane must intersect one piece of the double cone and its base.

The general equation for any conic section is

whereA, B, C, D, EandFare constants.

As we change the values of some of the constants, the shape of the corresponding conic will also change. It is important to know the differences in the equations to help quickly identify the type of conic that is represented by a given equation.
IfB2– 4ACis less than zero, if a conic exists, it will be either a circle or an ellipse.
IfB2– 4ACequals zero, if a conic exists, it will be a parabola.
IfB2– 4ACis greater than zero, if a conic exists, it will be a hyperbola.

INSTRUCTION 1: KHAN ACADEMY INSTRUCTION 2: SOPHIA

CONIC SECTION FORMULAS
CIRCLE / General Form / ax2 + bx + cy2 + dy + e = 0 + (y – k)2 = r2
Standard Form / (x – h)2 + (y – k)2 = r2
Center / (h, k)
Radius / r
Eccentricity / 0
VERTICAL / HORIZONTAL
PARABOLA / General Form / ax2 + bx + dy +e =0 / cy2 + dy + bx + e=0
Standard Form / y = a(x-h)2 + k / x = a(y-k)2
+ h
Opens / UP if a > 0 / RIGHT if a > 0
DOWN if a < 0 / LEFT if a < 0
Axis of Symmetry / x = h / y = k
Vertex / (h, k) / (h, k)
Focus / (h, k+p) / (h+p, k)
Directrix / y = k-p / x = h-p
a = 1 / 4p
p = 1 / 4a
Eccentricity / 1
VERTICAL / HORIZONTAL
ELIPSE / General Form / ax2 + bx + cy2 + dy + e = 0
Standard Form / /
Center / (0, 0) / (0, 0)
Focci / (c, 0), (-c, 0) / (0, c), (0, -c)
Vertices / (a, 0), (-a, 0) / (0, a), (0, -a)
y Intercepts / (0, b), (0, -b) / (b, 0), (-b, 0)
Major Axis / x axis / y axis
Minor Axis: / y axis / x axis
Length of Major Axis / 2a / 2a
Length of Minor Axis / 2b / 2b
c2 = a2 – b2, a > b > 0
Transverse Axis is VERTICAL / Transverse Axis is HORIZONTAL
HYPERBOLA / General Form / ax2 + bx - cy2 + dy + e = 0 / cy2 + dy - ax2 + bx + e = 0
Standard Form / /
Center / (0, 0) / (0, 0)
Focci / (c, 0), (-c, 0) / (0, c), (0, -c)
Vertices / (a, 0), (-a, 0) / (0, a), (0, -a)
Asymptotes / /
c2 = a2 + b2 – b2, a > b > 0

Parabolas

WORD or CONCEPT / DEFINITION or NOTES / EXAMPLE or GRAPHIC REPRESENTATION
parabola
vertex
axis of symmetry
Standard Form

EXAMPLE: 20. x=-3y+22-6

Vertex:

Axis of symmetry:

Parabola Opens:

Focal Point:

INSTRUCTION 1: KHAN ACADEMY INSTRUCTION 2: SOPHIA

Class Work

What is the vertex of the parabola?

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

1.  y=(x-2)2+4

2.  y=-3(x+5)2+5

3.  x=5y-72-6

4.  x=2y+42+9

5.  y=2(x-7)2-9

6.  y=34(x)2+4

7.  y=-(x-7)2

8.  x=53y+82-3

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

Write the following equations in standard form.

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

9.  y=x2+4x

10.  x=y2-8y

11.  y=x2-6x+8

12.  x=y2+2y+10

13.  y=x2+10x-12

14.  x=y2-8y+16

15.  y=2x2+12x

16.  x=3y2-6y

17.  y=-4x2+8x+6

18.  x=-6y2-12y+15

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

Graph each of the following. State the direction of the opening. Identify vertex and the focus and give the equation of the axis of symmetry.

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

19.  y=2x-42-3

20.  x=-3y+22-6

21.  y=12x+62+5

22.  x=34y-52+7

23.  y=-x-62-8

24.  x=-18y+52

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

Homework

What is the vertex of the parabola?

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

25.  y=(x+3)2+7

26.  y=-2(x+4)2+8

27.  x=6y-32-5

28.  x=23y+82-10

29.  y=(x-12)2-11

30.  y=2(x-3)2

31.  y=-4(x)2+5

32.  x=23y2

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

Write the following equations in standard form.

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

33.  y=x2+6x

34.  x=y2-10y

35.  y=x2-4x+11

36.  x=y2+8y+12

37.  y=x2+16x+49

38.  x=-y2-8y+8

39.  y=2x2+8x

40.  x=3y2-9y

41.  y=-5x2+10x+16

42.  x=-2y2-12y-30

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

Graph each of the following. State the direction of the opening. Identify vertex and the focus and give the equation of the axis of symmetry.

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

43.  y=8x-22-4

44.  x=-5y+12-7

45.  y=-14x+92-8

46.  x=-312y-22+1

47.  y=2x2-8

48.  x=38y+62

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

Circles

WORD or CONCEPT / DEFINITION or NOTES / EXAMPLE or GRAPHIC REPRESENTATION
center
radius
diameter
tangent
Standard Form

EXAMPLE: x-62+y-152=40

Center:

Radius:

Focal Point(s):

Write the standard form of the equation.

center (-2, -4) radius 9

INSTRUCTION: KHAN ACADEMY EQUATION of a CIRCLE INSTRUCTION 2: SOPHIA

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

Class Work

Name the center and radius of each circle.

49. x+22+y-42=16

50. x-32+y-72=25

51. x2+y+82=1

52.  x-72+y+12=17

53.  x+62+y2=32

Write the standard form of the equation.

54.  center (3,2) radius 6

55.  center (-4, -7) radius 8

56.  center (5, -9) radius 10

57.  center (-8, 0) diameter 14

58.  center (4,5) and point on the circle (3, -7)

59.  diameter with endpoints (6, 4) and (10, -8)

60.  center (4, 9) and tangent to the x-axis

61.  x2+4x+y2-8y=11

62.  x2-10x+y2+2y=11

63.  x2+7x+y2=11

Homework

Name the center and radius of each circle.

64.  x-92+y+52=9

65.  x+112+y-82=64

66.  x+132+y-32=144

67.  x-22+y2=19

68.  x-62+y-152=40

Write the standard form of the equation.

69.  center (-2, -4) radius 9

70.  center (-3, 3) radius 11

71.  center (5, 8) radius 12

72.  center (0 , 8) diameter 16

73.  center (-4,6) and point on the circle (-2, -8)

74.  diameter with endpoints (5, 14) and (11, -8)

75.  center (4, 9) and tangent to the y-axis

76.  x2-2x+y2+10y=11

77.  x2+12x+y2+20y=11

78.  4x2+16x+4y2-8y=12

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

Ellipses

WORD or CONCEPT / DEFINITION or NOTES / EXAMPLE or GRAPHIC REPRESENTATION
ellipse /
center
vertices
focci
major axis
minor axis
Standard Form

INSTRUCTION1: KHAN ACADEMY

INSTRUCTION 2: SOPHIA

a.  Identify the ellipse’s center and foci.

b.  State the length of the major and minor axes.

c.  Graph the ellipse.

92. x+5216+y-429=1

Write the equation of the ellipse in standard form.

x2+10x+2y2-12y=-1

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

Class Work

a.  Identify the ellipse’s center and foci.

b.  State the length of the major and minor axes.

c.  Graph the ellipse.

79.. x-224+y+3216=1

80. x-129+y-421=1

81.x225+y+5236=1

82.x+4216+y+228=1

83.x+126+y-1220=1

Write the equation of the ellipse in standard form.

86. x2+4x+2y2-8y=20

87. 4x2-8x+3y2+18y=5

84.  Center (1,4), a horizontal major axis of 10 and a minor axis of 6.

85.  Foci (2,5) and (2,11) with a minor axis of 10

86.  Foci (-2,4) and (-6,4) with a major axis of 18

Homework

d.  Identify the ellipse’s center and foci.

e.  State the length of the major and minor axes.

f.  Graph the ellipse.

87.  x+5216+y-429=1

88.  x-724+y+1249=1

89.  x-2225+y264=1

90.  x21+y24=1

91.  x+1236+y-1218=1

Write the equation of the ellipse in standard form.

92.  x2+10x+2y2-12y=-1

93.  3x2-12x+4y2+16y=8

94.  Center (-1,2), a vertical major axis of 8 and a minor axis of 4.

95.  Foci (3, 5) and (3,11) with a minor axis of 8

96.  Foci (-2, 6) and (-8, 6) with a major axis of 1

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

Hyperbolas

WORD or CONCEPT / DEFINITION or NOTES / EXAMPLE or GRAPHIC REPRESENTATION
hyperbola /
center
vertices
focci
major axis
minor axis
asymptotes
Standard Form

INSTRUCTION 1: KHAN ACADEMY INSRTUCTION 2: SOPHIA

a.  Write the equation of the hyperbola in standard form.

4y2-24y-5x2+20x=4

b.  Graph the hyperbola

Class Work

Graph each of the following hyperbolas. Write the equations of the asymptotes.

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

97.  y+5216-x-429=1

98.  x-724-y+1249=1

99.  y-2225-x264=1

100.  x21-y24=1

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

101.  y+1236-x-1218=1

Write the equation of the hyperbola in standard form.

102.  x2+4x-2y2-8y=20

103.  3y2+18y-4x2-8x=1

104.  Opens horizontally, with center (3,7) and asymptotes with slope m=±25

105.  Opens vertically, with asymptotes y=32x+8 and y=-32x-4

Homework

Graph each of the following hyperbolas. Write the equations of the asymptotes.

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

106.  x-224-y+3216=1

107.  y-129-x-421=1

108.  x225-y+5236=1

109.  y+4216-x+228=1

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

110.  y-629-x+5230=1

Write the equation of the hyperbola in standard form.

111.  4y2-24y-5x2+20x=4

112.  6y2+36y-x2-14x=1

113.  Opens vertically, with center (-4,1) and asymptotes with slope m=±37

114.  Opens horizontally, with asymptotes y=49x+10 and y=-49x-14

Conic Sections Unit Review

Multiple Choice

1.  What is the vertex of the parabola x=-23y-92+2

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

a.  (9,-2)

b.  (-2,2)

c.  (2,-2)

d.  (2,9)

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

2.  Write the following equations in standard form x=2y2+12y+2

a.  x=2x+62+2

b.  x=2x+32-7

c.  x=2x+32-10

d.  x=2x+32-16

3.  Identify the focus of x=-216y-32+2

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

a.  F(0,3)

b.  F(4,3)

c.  F(2,1)

d.  F(2,5)

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

4.  Write the equation of the parabola with vertex (4,-2) and focus (4,4).

a.  y=116x-42-2

b.  y=18x-42-2

c.  y=124x-42-2

d.  x=112y+22+4

5.  What are the center and the radius of the following circle: x-72+y+62=4

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

a.  (-7,6); r=4

b.  (7,-6); r=16

c.  (-7,6); r= 8

d.  (7,-6); r= 2

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

6.  Write the equation of the circle with a diameter with endpoints (6, 12) and (17, -8).

a.  x-112+y-62=521

b.  x-112+y+62=22.8

c.  x-112+y-22=521

d.  x-112+y-22=22.8

7.  Identify the ellipse’s center and foci: x+4216+y-1236=1

a.  C(-4,1); Foci: -4±20,1

b.  C(4,-1); Foci: 4±20,-1

c.  C(-4,1); Foci: -4,1±20

d.  C(4,-1); Foci: 4,1±20

8.  State the length of the major and minor axes of x+4216+y-1236=1

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

a.  Major: 4; Minor: 6

b.  Major: 6; Minor: 4

c.  Major: 36; Minor: 16

d.  Major: 12; Minor: 8

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

9.  Write the equation in standard form 4y2-24y-2x2+20x=22

a.  y-322-x-524=1

b.  y-322-x+524=1

c.  y-3227-x-5254=1

d.  y-3227-x+5254=1

10.  Write the equation in standard form x2+12x+3y2-12y=-1

a.  x+62+3(y-2)2=47

b.  x+6245+(y-2)215=45

c.  x+62+3(y-2)2=23

d.  x+6223+3(y-2)223=4

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

Extended Response

11.  A parabola has vertex (3, 4) and focus (4, 4)

a.  What direction does the parabola open? CIRCLE ONE: UP DOWN

b.  What is the equation of the axis of symmetry?

c.  Write the equation of the parabola.

12.  Given the general form of a conic section as Ax2+Bx+Cy2+Dy+E=0

a.  What do A & C tell us about the conic?

b.  What is center of the conic if A≠0 & C≠0?

13.  Consider a circle and a parabola.

a.  At how many points can they intersect? ______

b.  If the circle has equation x2+y2=4 and the parabola has equation y=x2, what are the point(s) of intersection?

c.  If the parabola were reflected over the x-axis, what would be the point(s) of intersection

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org

PMI-NJ Center for Teaching & Learning ~2~ NJCTL.org