Name: ______Period: _____ Date:______
Absolute & Relative Dating
Use your knowledge of relative dating to help you determine the sequence of events below.
1.) ______2.) ______3.) ______4.) ______5.) ______6.) ______7.) ______
8.) ______9.) ______10.) ______11.) ______12.) ______13.) ______
Assume R is an extrusion dated to be 90 million years old and T is dated to be 60 million years old.
1.) Estimate an age for rock layer J. ______
2.) Estimate an age for rock layer W. ______
3.) Estimate an age for rock layer B. ______
Assume M is an extrusion dated to be 130 million years old.
4.) Estimate an age for rock layer K. ______
5.) Estimate an age for rock layer L. ______
6.) Estimate an age for rock layer P. ______
7.) Estimate an age for fault A. ______
Use the table, graph, and geologic cross-section below to assist you in answering the following geologic dating practice questions.
Parent Isotope / Half-Life / DaughterUranium-235 / 704 million yrs / Lead-207
Potassium-40 / 1,250 million yrs / Argon-40
Determine the sequence of events in the
formation of the geologic cross-section above
and record it in the relative age listed below.
Use the radiometric dating to determine the ages Intrusion I
of the igneous intrusions and extrusions, then A radiometric dating lab finds 600 uranium-235 atoms
estimate the ages of the surrounding rock and 1800 lead-207 atoms in a rock sample. How old
based on these calculations. would they date intrusion I to be?
Relative Age Estimated Age
1.) ______
2.) ______
3.) ______Intrusion J
4.) ______Intrusion J is dated using potassium-argon dating.
5.) ______800 potasium-40 atoms are measured compared to
6.) ______800 argon-40 atoms. How old would Intrusion J
7.) ______be dated?
8.) ______
9.) ______
10.) ______