Design, Evaluation and Techno-Economic Analysis of a Demand Controlled Ventilation in Hot and Humid Climate

التحليل الاقتصادي و الفنيلأعمال تصميم و تقييم متطلبات التهوية في المناطق الحارة و الرطبة

By

Mahmood Ali Sohoo

Student ID: 100045

Dissertation submitted in partial fulfillment of

MSc. Sustainable Design of the Built Environment

Faculty of Engineering & Information Technology

Dissertation Supervisor

Professor Bassam Abu-Hijleh

January 2015

1

Declaration

Dissertation Release Form

Student Name
Mahmood Ali Sohoo / Student ID
100045 / Program
Sustainable Design of the Built Environment / Date
January 2015
Title:
Design, Evaluation and Techno-Economic Analysis of a Demand Controlled Ventilation in Hot and Humid Climate.

I warrant that the content of this dissertation is the direct result of my own work and that any use made in it of published or unpublished copyright material falls within the limits permitted by international copyright conventions.

I understand that one copy of my dissertation will be deposited in the University Library for permanent retention.

I hereby agree that the material mentioned above for which I am author and copyright holder may be copied and distributed by The British University in Dubai for the purposes of research, private study or education and that The British University in Dubai may recover from purchasers the costs incurred in such copying and distribution, where appropriate.

I understand that The British University in Dubai may make that copy available in digital format if appropriate.

I understand that I may apply to the University to retain the right to withhold or to restrict access to my dissertation for a period which shall not normally exceed four calendar yearsfrom the congregation at which the degree is conferred, the length of the period to be specified in the application, together with the precise reasons for making that application.

Signature

Design, Evaluation and Techno-Economic Analysis of a Demand Controlled Ventilation in Hot and Humid Climate

Dissertation Length: 35,518 words

(Excluding preliminaries and references)

Appendices are available upon request. Please contact the author to request a copy.

1

Abstract

Buildings consume 40% of world’s total energy and produce more than 30% of global CO2 emissions. “The heating and (cooling) of homes and buildings shares 56% of total energy consumed by buildings and homes.” (Fink, H.S., 2011, Aldossary, N.A., et. al, 2013). Future globalHVAC energy demand is expected to rise further due to increase in population growth, rapid urbanization and demand for new residential and commercial units, and rising global temperatures due to climate change.

The objective of the research was to develop an efficient ventilation system that lowers the ventilation energy consumption and reduced HVAC system sizing in Buildings. As part of the research, ventilation system in an existing building was modeled on IESVE (Baseline case model; Constant Air Volume-CAV) and its energy usage recorded. The model was updated by introducing a CO2 sensor (Proposed Case Model-CO2-based-DCV) and the energy model was re-run to compare against the baseline case model. Significant energy saving was found in the proposed case model.

In the baseline case model, intake airflow (outside air) is constant and configured based on maximum occupancy in the building whereas in reality the occupancy in the building is variable touching the maximum only for a portion of the duration, thereby creating an inefficient system, which contributes to energy wastage, higher CO2 emissions, and larger system sizes. Further, in cases when the real occupancy of the building is higher than configured, deterioration of indoor air quality occurs in the baseline case model.

In the proposed case model, intake airflow is configured to be modulated based on the occupancy profile, which is determined by set value of CO2 concentration (Maximum level of 800 PPM) as recommended by ASHRAE standard 62.1-2010 and Dubai Green Building regulations and specifications, 2011. As a result the air supply varies according to the building occupancy thereby creating an efficient ventilation system that reduces energy consumption, lowers CO2 emissions and results in smaller HVAC systems.

The IESVE energy model results of the two cases were compared, and it was found that the energy consumption and system capacity were lower in the proposed case model by 18.61% and 22.38% respectively. The test building consisted of 3 basements, ground floor and 43 floors and had mixed-usage: residential, commercial and hotel. The proposed case model considered occupancy profile based on ASHRAE standard 90.1-2010 and occupant density and the airflow based on ASHRAE standard 62.1-2010 (maximum amount of outside air limiting to 800 PPM CO2 concentration).

In conclusion, the proposed case model was found to lower system capacity, thus lowering the CAPEX needs, lower energy consumption, lowering OPEX needs throughout the life-cycle of the building, and reduced CO2 emissions, promoting sustainability of the built environment.

ملخص

تستهلك الأبنية 40% من مجموع إستهلاك الطاقةعلى مستوى العالم وتنتج أكثر من 30% من إنبعاثات ثاني أكسيد الكربون. وتحتل"التدفئة ( أوالتبريد) للبيوت والأبنية نصيب الأسد بمجموع 56% من مجموع إستهلاك الطاقة في البيوت والأبنية. ( فينك، إتش إس 2011، الدوسري. ن أ ومعاونوه 2013). ويتوقع أن يرتفع الطلب على الطاقة لغايات التدفئة والتبريد بمعدلات أكبر نتيجة للنمو السكاني، وتوسع العمران وإزدياد الطلب على الوحدات السكنية والتجارية الجديدة ونتيجة الإنحباس الحراري العالمي وتغيرات المناخ.

كان الهدف من هذا البحث هوتطوير نظام تهوية ذو كفاءة عالية من شأنه تخفيض إستهلاك الطاقة للتهوية ويقلل من حجم نظام التدفئة والتكييف في الأبنية. وكجزء من البحث، تم تطبيق نموذج IESVE (نموذج الخط القاعدي، الحجم الثابت لتدفق الهواء-سي إيه في) وتم قياس إستهلاكه للطاقة. وفد تم تحديث النموذج عن طريق تقديم مجس لقياس ثاني أكسيد الكربون ( نموذج الحالة المقترح – مبني على ثاني أكسيد الكربون DCV) وتم إعادة تشغيل نموذج الطاقة لمقارنته مع نموذج الخط القاعدي. لقد تم تحقيق كميات وفر لا يستهان بها في الطاقة في النموذج المقترح.

في نموذج الخط القاعدي، يكون الهواء الداخل (من الخارج) ثابت ويتم إعداده وتثيته بناءا على الحد الأعلى للسكان في البناية بينما في حقيقة الأمر فإن هذا الحد متذيذب ويصل حده الأقصى لفترة وجيزة فقط، وبالتالي فإن هذا يخلق نظام غير كفؤ مما يساهم في إهدار الطاقة ، وينتج معدلات عالية لإنبعاثات ثاني أكسيد الكربون وينتج عنه أيضا أنظمة تبريد أكبر من اللازم. بالإضافة لذلك، فإنه في الحالات الذي كان فيها عدد السكان الحقيقي في البناية أعلى مما تم إعداد النظام عليه، فإن التأثر السلبي في نوعية الهواء الداخلي حدث في نموذج الخط القاعدي.

في حالة النموذج المقترح كان الهواء الداخل معد مسبقا ليحاكي نسبة الإشغال السكاني، والتي تقرر بناءا على مجموعة عوامل وقيم مثل نسبة تركيز ثاني أكسيد الكربون ( حد أقصى 800 PPM ) كم هو مقرر بواسطة بمعيار ASHRAE 62.1-2010 ومواصفات وقوانين دبي للأبنية الخضراء للعام 2011. ونتيجة لذلك فإن منسوب الهواء يختلف وفقا لنسبة الإشغال السكاني وهذا بدوره يخلق نظام تهوية عالي الكفاءة مما يخفض إستهلاك الطاقة، ويقلل من إنبعاثات ثاني أكسيد الكربون وينتج عنه أنظمة تكييف وتبريد أصغر حجما.

عند مقارنة نتائج نموذج ال IESVE للطاقة في الحااتين تبين أن إستهلاك الطاقة والقدرة الإستيعابية كانتا أصغر في حالة النموذج المقترح بنسبة 18.61% و نسبة 22.38% على التوالي. وكانت البناية الأخيرة مكونة من عدد 3 بهو وطابق أرضي و43 طابق متكرر وكانت متعددة الأغراض للإستعمال كسكن وتجاري وتضم فندقا. النموذج المقترح أخذ في عين الإعتبار الإشغال السكاني بناءا على معيار ASHRAE 62.1-2010 ( الحد الأقصى لكمية الهواء الخارجي محدودة بتركيزثاني أكسيد الكربون بمقدار 800 PPM)

في الخلاصة، تم إستنتاج أن حالة النموذج المقترح كانت تخفض من القدرة الإستيعابية للنظام وبالتالي تقلل من متطلبات التكاليف الرأسمالية ( CAPEX) وتخفض متطلبات التكاليف التشغيلية (OPEX) طوال فترة العمر الإفتراضي للبناية، وتقلل من إنبعاثات ثاني أكسيد الكربون وهذا بدورة يحقق الإستدامة في البيئة المبنية.

Acknowledgment

Firstly, I would like to thank my supervisor, Dr. Bassam Abu Hijleh, for his kind support, enthusiasm, and continuous guidance. I have gained excellent knowledge as a researcher of renewable energy resources specifically related to energy conservation techniques pertaining to the building industry. Also his supervision led to a holistic approach towards a sustainable future in the current times of worldwide climate change.

Most importantly I would like to express my gratitude towards my family (Mrs. Tahira BegumJunejo, Miss Tayaba Mahmood Sohoo, Miss Batool Mahmood Sohoo, Miss Bushra Mahmood Sohoo, Mr. Muhammad MasoudMahmood Sohoo and Mr. Ahmad Mahmood Sohoo) for their patience and encouragement all throughout the duration of this research.

I would also like to thank my sincere and well-wisher Mr. Saud Faisal Al-Gurg and Mr. Issam Mahmoud Abu Qalbain for their support and encouragement in achieving this task done.

To all my friends and well-wishers for making this work memorable and a joyful experience with their time and support when I needed the most.

Above all, my parents (Respected Mr. Haji Abdul RazzaqueSohoo and Respected Miss NawabKhatoon Sohoo) for their blessings, love, kind words and making me capable of striving for the best throughout my academic and professional path so far and always.

My sincere thanks to all…………..

Abbreviations

ACHAir changes per hour

AHUAir Handling Units

BPSBuilding Performance Simulation

bcmbillion cubic meters

DBTDry Bulb Temperature (OC)

DCVCO2-based demand controlled ventilation

DEWADubai Electricity and Water Authority

FAHUFresh Air Handling Units

GCVgross calorific value

Gcalgigacalorie

GWgigawatt

GWHgigawatt hour

HDMHouse dust mites

Kb/cdthousand barrels per calendar day

Kcalkilocalorie

Kgkilogramme

kJkilojoule

kWhkilowatt hour

MBtumillion British thermal units

Mtmillion tones

Mtoemillion tones of oil equivalent

NZEBNet Zero Energy Building

OECDOrganisation for Economic Co-operation and Development

PPPpurchasing power quality

PUPrimary Units

SBSSick Building Syndrome

tmetric ton = tonne= 1000 kg

TJterajoule

Toetonne of oil equivalent=107 kcal

TPESTotal primary energy supply

TWhterawatt hour

WBTWet Bulb Temperature (OC)

1

Table of Contents

Declaration i / v
Abstract iii
Acknowledgement v / vi
Abbreviations vi
List of Figures xiv / xiii
List of Tables xxii / xx
CHAPTER 1: INTRODUCTION
1.1 / Green House Effect / 1
1.2 / Global Warming / 3
1.3 / Global Warming Impact / 4
1.4 / Ghg Emissions And Fossil Fuel / 5
1.5 / Fossil Fuel Consumption: Middle East And World / 6
1.6 / Ghg Emissions And Global Warming Relationship / 7
1.7 / Energy Consumed By Building Hvac System / 8
1.8 / Study Rationale / 9
1.9 / Dissertation Outline / 9
1.10 / Aims And Objectives
CHAPTER 2: LITERATURE REVIEW
2.1 / Background / 12
2.2 / Types Of Ventilation / 12
2.2.1 / Natural Ventilation / 12
2.2.2 / Single-Sided Ventilation / 13
2.2.3 / Cross-Ventilation / 14
2.2.4 / Stack Ventilation / 15
2.3 / Mechanical Ventilation / 16
2.3.1 / Constant Or Conventional Ventilation / 16
2.3.2 / Occupancy Based Demand Controlled Ventilation / 16
2.3.3 / CO2-Based Demand Controlled Ventilation / 16
2.4 / Indoor Air Quality And Ventilation Demand / 16
2.5 / Importance Of Buildings And Ventilation / 17
2.6 / Ventilation And Health / 18
2.6.1 / Residential Building Ventilation And Health / 18
2.6.2 / Ventilation And Children’S Health / 19
2.6.3 / Ventilation And Health Of Elderly People / 20
2.7 / Ventilation And Perceived Iaq / 20
2.8 / Energy And The Buildings / 21
2.9 / Global Hvac Energy And Building Industry / 23
2.9.1 / Hvac Energy Consumption In Middle East / 24
2.9.2 / Hvac Energy Consumption In Uae / 24
2.10 / Ventilation Needs And Ventilation Energy Requirements / 28
2.11 / Why Only Demand Controlled Ventilation / 29
2.12 / Ashrae Standards History / 30
2.12.1 / Reset Based On Occupancy / 33
2.12.2 / Reset Based On Ventilation Efficiency / 33
2.12.3 / Reset Based On Economizer Operation / 33
CHAPTER 3: RESEARCH METHODOLOGY
3.1 / Research Parameters / 34
3.2 / Review Of Previous Research Methodology / 34
3.3 / Observational Research Or Field Monitoring Method / 34
3.3.1 / Experimental Studies / 39
3.3.2 / Simulation Studies With Onsite Validation / 44
3.4 / Choosing An Appropriate Research Method / 47
3.4.1 / Experimental / 47
3.4.2 / Energy Modeling / 50
3.4.3 / Field Monitoring / 50
3.5 / Comparison Of Methodology And Selection Criteria / 52
3.6 / Choosing A Simulation Software / 54
3.7 / Software Information And Description / 57
CHAPTER 4: SIMULATION MODEL
4.1 / Model Description / 60
4.2 / Building Simulation; Model Details / 61
4.3 / Building Model Finishes And Hvac System Description / 63
4.4 / Modeling Process / 64
4.5 / Model Validation / 67
4.6 / Simulation Parameters / 68
4.7 / Simulation Model Configuration / 68
4.7.1 / Maximum Outside Air / 68
4.7.2 / ASHRAE Standard 62.1-2010 based Minimum Outside Air / 69
4.8 / Simulation Data Input / 71
4.8.1 / Building Orientation / 71
4.8.2 / Weather Parameters / 72
4.8.3 / Over-All Heat Transfer Coefficient (U-Value) / 73
4.8.4 / Shading Co-Efficient / 73
4.8.5 / Maximum Amount Of Outside Air / 73
4.8.6 / Ashrae Standard 62.1-2010 Recommended Outside Air / 75
4.8.7 / Kitchen Ventilation / 75
4.8.8 / Lighting Power Density / 76
4.8.9 / Equipment Power Density / 77
4.8.10 / Occupant Density / 77
4.8.11 / Occupancy Profile / 78
4.8.12 / Simulation Temperature / 78
4.8.13 / Hvac System / 79
4.9 / Simulation Case Configurations / 80
4.9.1 / Maximum Outside Air-Baseline Case Energy Model / 81
4.9.2 / Maximum Outside Air-Proposed Case Energy Model / 81
4.9.3 / Ashrae Standard 62.1-2010; Baseline Case Energy Model / 81
4.9.4 / Ashrae Standard 62.1-2010; Proposed Case Energy Model / 81
4.10 / Simulation Run / 82
CHAPTER 5 : SIMULATION RESULTS AND DISCUSSIONS
5.1 / Introduction / 83
5.2 / Simulation Data Analysis And Discussions / 83
5.3 / Cooling Coil Load And Thermal Energy Consumption / 89
5.4 / Baseline Case Model-Constant Air Volume (CAV) / 89
5.4.1 / Six Floors Based Energy Model / 89
5.4.2 / Second Floor (Typical) / 90
5.4.3 / Thirteenth Floor (Typical) / 91
5.5 / Proposed Case-CO2-Based-DCV; Cooling Coil Load And Thermal Energy Consumption / 92
5.5.1 / Six Floors Based Model / 92
5.5.2 / Second Floor (Typical) Cooling Coil Load And Thermal Energy Consumption / 93
5.5.3 / Thirteenth Floor Cooling Coil Load And Thermal Energy Consumption / 93
5.6 / Ashrae Standard 62.1-2010 Based Outside Air Quantity: Cooling Coil Load And Thermal Energy Consumption / 94
5.7 / Baseline Case Model; Outside Air CAV- Cooling Coil Load And Thermal Energy Consumption / 94
5.7.1 / Six Floors Based Energy Model – Cooling Coil Load And Thermal Energy Consumption / 94
5.7.2 / Second Floor (Typical) Cooling Coil Load And Thermal Energy Consumption / 95
5.7.3 / Thirteenth Floor Cooling Coil Load And Thermal Energy Consumption / 96
5.8 / Proposed Case; Ashrae Standard 62.1-2010 CO2 Based DCV / 97
5.8.1 / Six Floors Based Energy Model-Cooling Coil Load And Thermal Energy Consumption / 97
5.8.2 / Second Floor (Typical) Cooling Coil Load And Thermal Energy Consumption / 98
5.8.3 / Thirteenth Floor Cooling Coil Load And Thermal Energy Consumption / 99
5.9 / Entire Building’s Cooling Coil Loads And Thermal Energy Consumed / 100
5.10 / Electrical Energy Consumption Of Entire Building For Cooling, Dehumidification And Ventilation / 102
5.10.1 / Baseline Case Model-Constant Air Volume (CAV) / 102
5.10.2 / Proposed Case Model; CO2 Based DCV / 103
5.10.3 / Ashrae Standard 62.1-2010 Based Outside Air; Baseline Case Model-CAV / 104
5.10.4 / Ashrae Standard 62.1-2010 Based Outside Air; Proposed Case-DCV / 104
5.11 / Energy Consumptions And Savings / 105
5.12 / Electrical Energy Consumption And Savings Comparing Different Outside Air Supply Strategies / 106
5.12.1 / Baseline case model-Constant Air Volume (CAV) v/s Proposed case model-CO2 based DCV / 106
5.12.2 / Baseline Case Model-ASHRAE standard 62.1-2010 with Constant Air Volume (CAV) v/s Proposed Case Model-ASHRAE standard 62.1-2010, CO2 based DCV / 106
5.12.3 / Baseline case model-Constant Air Volume (CAV) v/s Baseline Case Model-ASHRAE standard 62.1-2010 with Constant Air Volume (CAV) / 107
5.12.4 / Proposed case model-CO2 based DCV v/s Proposed Case Model-ASHRAE standard 62.1-2010, CO2 based DCV / 107
5.12.5 / Baseline case model-Constant Air Volume (CAV) v/s Proposed Case Model; ASHRAE standard 62.1-2010, CO2 based DCV / 108
5.12.6 / Baseline Case Model-ASHRAE standard 62.1-2010 with Constant Air Volume (CAV) v/s Proposed case model-CO2 based DCV / 108
5.13 / Chiller Plant Sizing / 109
5.13.1 / Maximum Outside Air-Baseline Case Model-CAV / 109
5.13.2 / Maximum Outside Air-Proposed Case Model-DCV / 110
5.13.3 / Baseline Case Model-ASHRAE standard 62.1-2010-CAV / 110
5.13.4 / Proposed Case Model-ASHRAE standard 62.1-2010-DCV / 111
5.14 / Chiller Plant Sizinig Comparison / 111
5.14.1 / Baseline Case Model-Constant Air Volume (CAV) V/S Proposed Case Model-Co2 Based DCV / 112
5.14.2 / Baseline Case Model-Ashrae Standard 62.1-2010 With Constant Air Volume (CAV) V/S Proposed Case Model-Ashrae Standard 62.1-2010, CO2 Based DCV / 112
5.14.3 / Baseline Case Model-Constant Air Volume (CAV) V/S Baseline Case Model-Ashrae Standard 62.1-2010 With Constant Air Volume (CAV) / 112
5.14.4 / Proposed Case Model-CO2 Based DCV V/S Proposed Case Model-Ashrae Standard 62.1-2010, CO2 Based DCV / 113
5.14.5 / Baseline Case Model-Constant Air Volume (CAV) V/S Proposed Case Model; Ashrae Standard 62.1-2010, CO2 Based DCV / 113
5.14.6 / Baseline Case Model-Ashrae Standard 62.1-2010 With Constant Air Volume (CAV) V/S Proposed Case Model-CO2 Based DCV / 113
5.15 / Cost Of Energy / 114
5.16 / Energy Cost And Tariff / 114
5.16.1 / Baseline Case Model-Constant Air Volume (CAV) / 115
5.16.2 / Proposed Case Model-CO2 Based DCV / 115
5.16.3 / Baseline Case Model-Ashrae Standard 62.1-2010 With Constant Air Volume (CAV) / 115
5.16.4 / Proposed Case Model-Ashrae Standard 62.1-2010, CO2 Based DCV / 115
5.17 / Operational Cost Comparisons Using Demand Controlled Ventilation Design Strategy / 116
5.17.1 / Baseline Case Model-CAV V/S Proposed Case Model-DCV / 116
5.17.2 / Baseline Case Model-ASHRAE Standard 62.1-2010-CAV V/S Proposed Case Model-ASHRAE Standard 62.1-2010-DCV / 116
5.17.3 / Baseline case model-Constant Air Volume (CAV) V/S Baseline Case Model-ASHRAE standard 62.1-2010 with Constant Air Volume (CAV) / 116
5.17.4 / Proposed case model-CO2 based DCV V/S Proposed Case Model-ASHRAE standard 62.1-2010, CO2 based DCV / 117
5.17.5 / Baseline case model-Constant Air Volume (CAV) v/s Proposed Case Model; ASHRAE standard 62.1-2010, CO2 based DCV / 117
5.17.6 / Baseline Case Model-ASHRAE standard 62.1-2010 with Constant Air Volume (CAV) v/s Proposed case model-CO2 based DCV / 118
5.18 / Reduction In CO2 Emissions / 118
5.18.1 / Baseline Case Model; Constant Air Volume (CAV) / 118
5.18.2 / Proposed Case Model; CO2 Based DCV / 119
5.18.3 / Baseline Case Model; ASHRAE Standard 62.1-2010 With Constant Air Volume (CAV) / 119
5.18.4 / Proposed Case Model; ASHRAE Standard 62.1-2010, CO2 Based DCV / 119
5.19 / Reductions In CO2 Emissions Using DCV / 119
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS
6.1 / Summary Of Results / 122
6.2 / Important Findings / 125
6.3 / Recommendations / 126
6.4 / Further Work / 127
References
/ 128
/
Appendices
Appendix-A / Floor Plans and External Building Fabric / 138
Appendix-B / IESVE; Sun cast and construction material Inputs data / 146
Appendix-C / IESVE; Apache System and PRM Navigator input data / 149
Appendix-D / HVAC Systems and Controllers; Baseline and Proposed / 154
Appendix-E / Occupancy profiles as per ASHRAE 90.1 – 2007 for all Baseline and Proposed Cases / 171
Appendix-F / Results / 174
Appendix-G / Output Data; Graphical and Tabular presentation of Room Temperature, Room CO2 concentration, Air Supply and Occupancy / 242
Appendix-H / Baseline and Proposed case model; Cooling Coil Capacities, Chiller Load and Electrical Energy Consumption based on Outside Air Quantity to satisfy CO2 concentration of 800 PPM / 266
Appendix-J / Cooling Coil Capacities, Chiller Load and Electrical Energy Consumption based on ASHRAE standard 62.1-2010 recommended Minimum Outside Air Quantity / 279

List of Figures

Figure1.1: / Global Warming Trend and ocean heat content change in upper 2,300 feet. (C2ES, 2011) / 2
Figure1.2: / Natural and Enhanced Green House Effect. (C2ES, 2011) / 2
Figure1.3: / Mean average temperature of 1983-1992 and 1993-2002 decades for Athens and Thessaloniki. (IJEE, 2013) / 4
Figure1.4: / US Greenhouse Gas Emissions, 2008. (C2ES, 2011) / 5
Figure1.5: / Fossil Fuel Energy Consumption (% of total). (The World Bank, 2011) / 6
Figure1.6 / World total primary energy supply from 1971 to 2010 by fuel (Mtoe). (IEA, 2012) / 6
Figure1.7: / Global fossil carbon emission by fuel type, 1800 – 2007. (Wikipedia, 2007) / 7
Figure2.1: / Illustration of Natural Single-sided Ventilation. Courtesy of Environmental Design Solutions Limited, UK (2011) / 13
Figure2.2: / Illustration of Natural Cross-Ventilation. Courtesy of Texas Technical College of Architecture, USA (2011) / 14
Figure2.3: / Illustration of Stack-Ventilation. Courtesy of Texas Technical College of Architecture, USA (2011) / 15
Figure2.4: / World Energy Consumption 1990-2040. A courtesy of EIA (2010) / 22
Figure2.5: / Buildings by Type-Emirate of Dubai (2005, 2011). Courtesy: Dubai Statistics Center (2011) / 25
Figure2.6: / Installed Power Generation Capacity and annual peak power demand 2012. Courtesy DEWA. / 26
Figure2.7: / Monthly Peak Demand of Power Consumption for 2011 and 2012. Courtesy DEWA. / 27
Figure 2.8: / Sector-wise Electricity Consumption in 2012. Courtesy DEWA. / 27
Figure 2.9: / Annual cooling energy consumption with three options of occupancy profiles, 100%, 75% and 50%. (Nassif, N 2011) / 29
Figure 2.10: / ASHRAE Standard- Update History. (Stanke, D, 2008) / 31
Figure 2.11: / Minimum Ventilation Rates and Effective Minimum Rates. (Stanke, D, 2008) / 32
Figure 3.1: / Flow chart of the adaptive DCV strategy. (Sun, Z., et al, 2010). / 35
Figure 3.2: / Schematic of the multi-zone ventilation system in the typical floor. (Sun, Z., et al) 2010). / 36
Figure 3.3: / Schematic of the locations of CO2 sensors and air flow rate meters in the typical floor. (Sun, Z., et al, 2010). / 36
Figure 3.4: / Schematic of the outdoor ventilation control system for each AHU system. (Sun, Z., et al, 2010). / 37
Figure 3.5: / In-situ implementation architecture of the DCV strategy. (Sun, Z., et al, 2010). / 38
Figure 3.6: / Comparison of the outdoor air flow rates between the uses of the two ventilation strategies. (Sun, Z., et al, 2010) / 39
Figure 3.7: / Schematic of air-handling system of a typical office floor. (Shan, K, et al, 2010) / 40
Figure 3.8: / Data flow in the control implementation platform (IBmanager). (Shan, K., et al, 2010) / 40
Figure 3.9: / CO2 concentrations of all zones using strategy-C in AHU-1 on 15th floor. (Shan, K., et al, 2010) / 41
Figure 3.10: / Comparison between the outdoor airflow set-points given strategy-A and C on AHU-1 at 15th floor. (Shan, K., et al, 2010) / 42
Figure 3.11: / Comparison between the outdoor airflow set-points given strategy-A and C on AHU2 at 15th floor. (Shan, K., et al, 2010) / 42
Figure 3.12: / Return air CO2 concentration of AHU-1 at 17th floor using strategy A-2. (Shan, K., et al, 2010) / 43
Figure 3.13: / One day’s schedule from an indoor ice rink / 45
Figure 3.14: / The illustration of training session, break, sample time, training remaining time, and training remaining time supplement / 45
Figure 3.15: / The illustration of CO2 set point and CO2 set point supplement. / 45
Figure 3.16: / The schematic diagram of the implementation of the new strategy. / 46
Figure 3.17: / Comparison of simulated CO2 concentrations between the new strategy and the proportional control in the sports training arena (experimental CO2 generation rates, 14 days). (Lu et al, 2011) / 47
Figure 3.18: / West B Room with Four Tin Men. (Zhang Li, 2011) / 48
Figure 3.19: / Flow Meter used to Control the CO2 Flow Rate. (Zhang Li, 2011) / 49