Supplemental Materials II

Examples of Found Nets

Contents

About the Outputs 1

Table 1 and Outputs from Version 1/3 5

Representative CGD and Systre output for 3,4-nets 5

Representative CGD and Systre output for 3,6-nets 32

Representative CGD and Systre output for 4,4-nets 67

Representative CGD and Systre output for 4,6-nets 108

Table 2 and Outputs from Version 2/3 155

Representative CGD output for 3,6-nets 155

Representative CGD output for 4,4-nets 160

Representative CGD output for 4,8-nets 164

Some Nets Found by Version 2/3 But Not Listed in Table 2 199

TOPOS Outputs of Selected Nets 210

About the Outputs

Since embedded nets are enumerated as geometric objects, based on a naive breadth-first search, the raw outputs are merely embedded nets with no particularly desirable properties. Although an embedded net of optimal symmetries will eventually be enumerated by the program, there is as yet no firm estimate of how many sub-optimal but topologically equivalent embedded nets one would encounter first.

For example, among the 4,4-coordinated nets, the diamond (dia) net is frequently encountered. The small search space for Version 2/3 suggests how severe the problem may become. Among dia embedded nets of cubic symmetry, one finds examples like:

CRYSTAL

NAME spg3s0et3s0NET8

GROUP P1

CELL 2.00000 2.00000 2.00000 90.00000 90.00000 90.00000

ATOM 1 4 0.50000 0.00000 0.00000

ATOM 2 4 0.00000 0.00000 0.00000

ATOM 3 4 0.50000 0.50000 0.50000

ATOM 4 4 0.00000 0.00000 0.50000

ATOM 5 4 0.00000 0.50000 0.00000

ATOM 6 4 0.00000 0.50000 0.50000

ATOM 7 4 0.50000 0.00000 0.50000

ATOM 8 4 0.50000 0.50000 0.00000

EDGE 0.50000 0.00000 0.50000 0.50000 -0.50000 0.50000

EDGE 0.50000 0.00000 0.00000 1.00000 0.50000 -0.50000

EDGE 0.50000 0.00000 0.00000 0.50000 -0.50000 0.00000

EDGE 0.00000 0.00000 0.50000 0.00000 0.50000 0.50000

EDGE 0.00000 0.50000 0.00000 -0.50000 1.00000 0.50000

EDGE 1.00000 -0.50000 0.00000 0.50000 0.00000 0.50000

EDGE 0.00000 0.50000 0.50000 -0.50000 0.50000 0.50000

EDGE 0.00000 0.00000 0.00000 0.00000 0.00000 0.50000

EDGE 0.00000 0.00000 0.50000 -0.50000 0.00000 0.50000

EDGE 0.50000 0.00000 0.50000 1.00000 0.00000 0.50000

EDGE 0.00000 0.50000 0.00000 0.50000 0.50000 0.00000

EDGE 0.00000 0.00000 0.00000 0.00000 0.50000 0.00000

EDGE 0.00000 0.50000 -0.50000 0.00000 0.50000 0.00000

EDGE -0.50000 0.00000 1.00000 0.00000 0.50000 0.50000

EDGE 0.00000 0.00000 0.00000 0.50000 0.50000 0.50000

EDGE 0.50000 0.00000 0.00000 0.00000 0.00000 0.00000

EDGE 0.50000 1.00000 0.00000 0.50000 0.50000 0.00000

EDGE 0.50000 -0.50000 1.00000 0.00000 0.00000 0.50000

EDGE 0.50000 0.50000 -0.50000 0.50000 0.50000 0.00000

EDGE 0.00000 0.50000 0.50000 0.00000 0.50000 1.00000

EDGE 0.50000 0.00000 0.00000 0.50000 0.00000 0.50000

EDGE 0.50000 0.50000 0.50000 0.50000 1.00000 0.50000

EDGE 0.50000 0.50000 0.50000 0.50000 0.50000 1.00000

EDGE 0.50000 0.50000 0.50000 1.00000 0.50000 0.50000

EDGE 0.00000 1.00000 -0.50000 0.50000 0.50000 0.00000

END

Maple drew this one as:

This one looks a little better:

CRYSTAL

NAME spgdmm2s0etdmm2s0NET25873

GROUP P1

CELL 1.41421 1.41421 1.41421 120.00000 60.00000 90.00000

ATOM 1 4 0.00000 0.00000 0.00000

ATOM 2 4 0.50000 0.50000 0.00000

EDGE 0.00000 0.00000 0.00000 -0.50000 0.50000 1.00000

EDGE 0.00000 0.00000 0.00000 0.50000 -0.50000 0.00000

EDGE 0.00000 1.00000 0.00000 0.50000 0.50000 0.00000

EDGE 1.00000 0.00000 0.00000 0.50000 0.50000 0.00000

EDGE 0.50000 0.50000 0.00000 1.00000 1.00000 0.00000

EDGE 0.50000 0.50000 0.00000 1.00000 0.00000 -1.00000

EDGE 0.00000 0.00000 0.00000 -0.50000 0.50000 0.00000

EDGE 0.00000 0.00000 0.00000 -0.50000 -0.50000 0.00000

END

But this one (which occurred frequently) is still sub-optimal:

Looking at dia embedded nets of hexagonal symmetry is not much better. For example:

CRYSTAL

NAME spg2s5et2s5NET14855

GROUP P1

CELL 1.00000 1.73205 2.00000 90.00000 90.00000 90.00000

ATOM 1 4 0.00000 0.00000 0.00000

ATOM 2 4 0.50000 0.50000 0.00000

ATOM 3 4 0.50000 0.50000 0.50000

ATOM 4 4 0.00000 0.00000 0.50000

EDGE 0.00000 0.00000 0.00000 0.00000 0.00000 0.50000

EDGE 0.00000 0.00000 0.00000 -0.50000 0.50000 0.00000

EDGE 0.50000 0.50000 0.00000 0.50000 0.50000 0.50000

EDGE 0.50000 0.50000 0.50000 1.00000 1.00000 0.50000

EDGE 0.00000 0.00000 0.00000 0.00000 0.00000 -0.50000

EDGE 0.00000 0.00000 0.00000 0.50000 0.50000 0.00000

EDGE 0.50000 -0.50000 0.50000 0.00000 0.00000 0.50000

EDGE 0.50000 0.50000 0.50000 0.00000 1.00000 0.50000

EDGE 0.50000 0.50000 0.00000 0.50000 0.50000 -0.50000

EDGE 0.50000 0.50000 0.50000 0.50000 0.50000 1.00000

EDGE 1.00000 0.00000 0.00000 0.50000 0.50000 0.00000

EDGE 0.00000 0.00000 1.00000 0.00000 0.00000 0.50000

EDGE -0.50000 -0.50000 0.50000 0.00000 0.00000 0.50000

END

Maple’s picture of this one is:

Since dia is uninodal and edge transitive, while Version 2/3 starts with two edges and two vertices, we should not be surprised to find that a small search space produces suboptimal examples of dia. In fact, Version 1/3 had a larger search space, and as can be seen by comparing dmin and Dmin on Table 1, even Version 1/3 did not find an optimal embedding. Either a larger point group assignment or a larger search space is required.

Versions 1/3 and 2/3 both generate a lot of chaff, which had to be searched through manually. One could address it in the standard way by massaging the enumerated nets to optimize the symmetry, or by expanding the search space to look for more nets and then automating the chaff-elimination process. Version 1 will take the latter approach.

Below, the examples from Version 1/3 are typical outputs. They may be of interest geometrically, but they are primarily of interest as an indication of what randomly selected embedded nets look like. The industrious reader who looks them up will find pyramidal vertices and edge crossings. The examples from Version 2/3 have been screened for at least esthetics, and for some of the nets exhibited in table 2, we have presented several embeddings of the same net for readers to compare.

Table 1 and output from Version 1/3

Representative CGD and Systre output for 3,4-nets

These are binodal edge transitive (embedded) nets.

Nets generated within m-3m (cubic)

Note: It is impossible for a 3,4-coordinated edge-transitive embedded net to be hexagonal: the 3-coordinated nodes would need to have vertical rotational axes, and the resulting embedded net would be at most a layer.

The following is a selection of embedded nets generated by Version 1/3 of the Crystal Turtlebug, one per isomorphism (topology) equivalence class. This file list a representative of every 3,4-coordinated (binodal, edge transitive) topology found by Version 1/3. Given are the CGD file (position of the second node is given in the bold CGD file line) and the Systre output.

The names are also generated by the program: “spg”, followed by the (conjugate of) the point group applied to the first node at the origin, followed by “et”, followed by the (conjugate of) the point group applied to the second node, followed by “NET” and the number of the embedded net in the given topological density (td10) of all nets generated in that “run”.

CGD File, second vertex at [-1, 2, 0]:

CRYSTAL

NAME spg222s1et3s1NET1

GROUP P1

CELL 6.92820 6.92820 6.92820 109.47122 70.52878 70.52878

ATOM 1 4 0.50000 0.25000 0.75000

ATOM 2 4 0.12500 0.25000 0.87500

ATOM 3 4 0.12500 0.62500 0.00000

ATOM 4 4 0.00000 0.00000 0.00000

ATOM 5 3 0.75000 0.87500 0.12500

ATOM 6 4 0.87500 0.12500 0.75000

ATOM 7 3 0.75000 0.37500 0.12500

ATOM 8 3 0.25000 0.37500 0.12500

ATOM 9 3 0.75000 0.87500 0.62500

ATOM 10 3 0.25000 0.87500 0.62500

ATOM 11 3 0.75000 0.37500 0.62500

ATOM 12 4 0.87500 0.00000 0.37500

ATOM 13 3 0.25000 0.87500 0.12500

ATOM 14 3 0.25000 0.37500 0.62500

EDGE 0.00000 1.00000 0.00000 0.25000 0.87500 0.12500

EDGE 1.12500 0.25000 -0.12500 0.75000 0.37500 0.12500

EDGE 0.12500 0.25000 0.87500 0.25000 -0.12500 0.62500

EDGE 0.00000 0.00000 0.00000 0.25000 -0.12500 -0.37500

EDGE 0.87500 1.00000 0.37500 0.75000 0.87500 0.62500

EDGE 0.00000 0.00000 0.00000 -0.25000 -0.12500 0.12500

EDGE 0.12500 0.62500 0.00000 0.25000 0.87500 0.12500

EDGE 0.12500 0.25000 0.87500 0.25000 0.37500 0.62500

EDGE 0.12500 1.25000 0.87500 0.25000 0.87500 0.62500

EDGE 0.50000 0.25000 0.75000 0.25000 0.37500 1.12500

EDGE 0.25000 0.87500 0.62500 -0.12500 1.12500 0.75000

EDGE 0.12500 0.62500 0.00000 0.25000 0.37500 -0.37500

EDGE 0.00000 1.00000 1.00000 0.25000 0.87500 0.62500

EDGE 0.75000 -0.12500 0.62500 0.87500 0.12500 0.75000

EDGE 0.50000 0.25000 0.75000 0.75000 0.37500 0.62500

EDGE 0.75000 0.37500 1.12500 0.87500 0.12500 0.75000

EDGE 0.75000 0.87500 0.12500 1.00000 1.00000 0.00000

EDGE 1.25000 -0.12500 0.12500 0.87500 0.00000 0.37500

EDGE 0.75000 -0.12500 0.62500 0.87500 0.00000 0.37500

EDGE 0.75000 -0.12500 0.12500 0.87500 0.00000 0.37500

EDGE 0.12500 0.62500 0.00000 -0.25000 0.87500 0.12500

EDGE 0.50000 0.25000 0.75000 0.75000 -0.12500 0.62500

EDGE 1.00000 0.00000 0.00000 0.75000 0.37500 0.12500

EDGE 0.87500 1.12500 0.75000 0.75000 0.87500 0.62500

EDGE 0.75000 0.87500 0.12500 1.12500 0.62500 0.00000

EDGE 0.75000 0.37500 0.62500 0.87500 0.00000 0.37500

EDGE 0.50000 0.25000 0.75000 0.25000 0.37500 0.62500

EDGE 0.12500 0.25000 0.87500 0.25000 0.37500 1.12500

EDGE 0.12500 0.62500 0.00000 0.25000 0.37500 0.12500

EDGE 0.25000 0.37500 0.12500 0.12500 0.25000 -0.12500

EDGE 0.87500 1.00000 0.37500 0.75000 0.87500 0.12500

EDGE 0.12500 0.62500 1.00000 0.25000 0.37500 0.62500

EDGE 0.50000 1.25000 0.75000 0.75000 0.87500 0.62500

EDGE 0.00000 0.00000 0.00000 0.25000 -0.12500 0.12500

EDGE 0.87500 0.12500 0.75000 1.25000 -0.12500 0.62500

EDGE 0.12500 0.25000 0.87500 -0.25000 0.37500 1.12500

EDGE 0.50000 0.25000 -0.25000 0.25000 0.37500 0.12500

EDGE 0.00000 0.00000 0.00000 -0.25000 0.37500 0.12500

EDGE -0.12500 1.00000 0.37500 0.25000 0.87500 0.12500

EDGE 0.75000 0.37500 0.12500 0.87500 0.12500 -0.25000

EDGE 0.87500 0.12500 0.75000 0.75000 0.37500 0.62500

END

Systre Output (not locally stable):

Structure #1 - "spg222s1et3s1NET1".

Structure of dimension 3.

Given space group is P1.

14 nodes and 24 edges in repeat unit as given.

======

!!! ERROR (STRUCTURE) - Structure is not locally stable.

!!! In structure #1 - "spg222s1et3s1NET1".

!!! Last status: Computing barycentric placement...

======

Finished structure #1 - "spg222s1et3s1NET1".

CGD File, second vertex at [-1, 1, 3]:

CRYSTAL

NAME spg222et3s1NET1

GROUP P1

CELL 4.00000 4.00000 4.00000 90.00000 90.00000 90.00000

ATOM 1 4 0.00000 0.00000 0.00000

ATOM 2 3 0.25000 0.25000 0.25000

ATOM 3 3 0.75000 0.25000 0.75000

ATOM 4 3 0.75000 0.75000 0.25000

ATOM 5 4 0.50000 0.50000 0.00000

ATOM 6 4 0.50000 0.00000 0.50000

ATOM 7 3 0.25000 0.75000 0.75000

EDGE 0.75000 0.25000 0.75000 0.50000 -0.50000 1.00000

EDGE 0.25000 0.25000 1.25000 0.50000 0.00000 0.50000

EDGE 0.75000 -0.25000 0.25000 0.50000 0.50000 0.00000

EDGE 0.75000 0.25000 0.75000 0.50000 0.00000 1.50000

EDGE 0.25000 -0.25000 -0.25000 0.50000 0.50000 0.00000

EDGE 0.75000 0.75000 0.25000 0.50000 1.00000 -0.50000

EDGE 0.50000 1.50000 1.00000 0.25000 0.75000 0.75000

EDGE 0.50000 1.00000 1.50000 0.25000 0.75000 0.75000

EDGE 0.00000 0.00000 0.00000 -0.75000 -0.25000 -0.25000

EDGE 0.75000 0.75000 0.25000 0.50000 1.50000 0.00000

EDGE 1.00000 1.00000 1.00000 0.25000 0.75000 0.75000

EDGE 0.25000 1.25000 0.25000 0.50000 0.50000 0.00000

EDGE 0.00000 0.00000 1.00000 0.75000 0.25000 0.75000

EDGE 0.25000 0.25000 0.25000 0.50000 -0.50000 0.00000

EDGE 0.00000 1.00000 0.00000 0.75000 0.75000 0.25000

EDGE 0.75000 1.25000 -0.25000 0.50000 0.50000 0.00000

EDGE 0.75000 0.25000 -0.25000 0.00000 0.00000 0.00000

EDGE 0.00000 0.00000 0.00000 0.75000 -0.25000 0.25000

EDGE 0.25000 -0.25000 -0.25000 0.50000 0.00000 0.50000

EDGE 1.00000 0.00000 0.00000 0.25000 0.25000 0.25000

EDGE -0.75000 0.25000 0.25000 0.00000 0.00000 0.00000

EDGE 0.75000 0.25000 -0.25000 0.50000 0.00000 0.50000

EDGE 0.25000 0.25000 0.25000 0.50000 0.00000 -0.50000

EDGE 0.75000 -0.25000 1.25000 0.50000 0.00000 0.50000

END

Systre Output (bor):

Structure #1 - "spg222et3s1NET1".

Structure of dimension 3.

Given space group is P1.

7 nodes and 12 edges in repeat unit as given.

Given repeat unit is accurate.

Point group has 24 elements.

2 kinds of node.

Equivalences for non-unique nodes:

3 --> 2

4 --> 2

5 --> 1

6 --> 1

7 --> 2

Coordination sequences:

Node 1: 4 8 20 30 60 68 120 126 200 180

Node 2: 3 9 15 33 45 84 90 152 150 240

TD10 = 819.8571

Ideal space group is P-43m.

Ideal group differs from given (P-43m vs P1).

Structure was found in builtin archive:

Name: bor

Relaxed cell parameters:

a = 2.44949, b = 2.44949, c = 2.44949

alpha = 90.0000, beta = 90.0000, gamma = 90.0000

Cell volume: 14.69694

Relaxed positions:

Node 1: 0.00000 0.50000 0.50000

Node 2: 0.33333 0.33333 0.66667

Edges:

0.00000 0.50000 0.50000 <-> 0.33333 0.33333 0.66667

Edge centers:

0.16667 0.41667 0.58333

Edge statistics: minimum = 1.00000, maximum = 1.00000, average = 1.00000

Angle statistics: minimum = 70.52878, maximum = 131.81031, average = 114.82988

Shortest non-bonded distance = 1.15470

Degrees of freedom: 2

Finished structure #1 - "spg222et3s1NET1".

CGD File, second vertex at [-3, 1, 1]:

CRYSTAL

NAME spg222s1et3s1NET3

GROUP P1

CELL 5.65685 5.65685 5.65685 60.00000 120.00000 120.00000

ATOM 1 4 0.50000 0.50000 0.50000

ATOM 2 4 0.00000 0.00000 0.00000

ATOM 3 3 0.87500 0.62500 0.62500

ATOM 4 4 0.00000 0.00000 0.50000

ATOM 5 3 0.12500 0.87500 0.37500

ATOM 6 3 0.87500 0.62500 0.12500

ATOM 7 4 0.00000 0.50000 0.00000

ATOM 8 3 0.87500 0.12500 0.62500

ATOM 9 3 0.62500 0.37500 0.37500

ATOM 10 3 0.12500 0.37500 0.87500

ATOM 11 3 0.12500 0.37500 0.37500

ATOM 12 3 0.37500 0.62500 0.62500

ATOM 13 4 0.50000 0.50000 0.00000

ATOM 14 4 0.50000 0.00000 0.50000

EDGE 0.12500 0.87500 0.37500 0.50000 1.50000 0.00000

EDGE 0.00000 0.00000 0.50000 0.12500 0.37500 -0.12500

EDGE 0.87500 0.62500 0.12500 1.00000 1.00000 -0.50000

EDGE 0.50000 1.50000 0.50000 0.12500 0.87500 0.37500

EDGE 0.87500 0.62500 -0.37500 0.50000 0.50000 0.00000

EDGE 0.12500 0.37500 0.37500 0.50000 0.50000 0.00000

EDGE -0.12500 -0.37500 1.12500 0.00000 0.00000 0.50000

EDGE 0.50000 0.50000 0.50000 0.87500 0.62500 1.12500

EDGE 0.87500 1.12500 -0.37500 0.50000 0.50000 0.00000

EDGE 0.00000 0.00000 0.00000 -0.12500 -0.37500 -0.37500

EDGE 0.87500 0.12500 0.62500 0.50000 -0.50000 0.50000

EDGE 1.00000 -0.50000 1.00000 0.87500 0.12500 0.62500

EDGE 0.50000 0.50000 0.50000 0.87500 1.12500 0.62500

EDGE 0.50000 0.50000 -0.50000 0.87500 0.62500 0.12500

EDGE 0.87500 -0.37500 0.62500 0.50000 0.00000 0.50000

EDGE -0.62500 -0.37500 -0.37500 0.00000 0.00000 0.00000

EDGE 0.87500 -0.37500 1.12500 0.50000 0.00000 0.50000

EDGE 0.50000 0.50000 0.50000 0.12500 -0.12500 0.37500

EDGE 0.00000 0.00000 0.00000 0.12500 0.37500 0.37500

EDGE 0.87500 0.12500 0.62500 0.50000 -0.50000 1.00000

EDGE 0.50000 0.50000 0.50000 0.12500 0.37500 -0.12500

EDGE 0.87500 0.62500 0.12500 0.50000 1.00000 -0.50000