Practice Problems and Solutions for Exam 2
The Normal Distribution
As a student in a statistics class, you want to know how easy or hard it will be to pass the class. You know that the mean grade in the class is 70 and the standard deviation is 9 (from previous semesters). Use this information to answer the following questions:
1. Assuming that grades are normally distributed, what proportion of students do you expect to pass the class (e.g., by scoring higher than 59)? What proportion of students do you expect to fail the class? If there are 50 people in your class, how many people do you expect to pass? How many people do you expect to fail?
What you know: Y=59, =70, =9, N=50
Lower than the mean: p=.3888, p=.1112; higher than the mean: p=.5
You should expect that a proportion of .8888 students will pass the class (a proportion of .8888 cases have a raw score higher than a z score of -1.22). You should expect that a proportion of .1112 students will fail the class. If there are 50 people in the class, you should expect that 44 or 45 students will pass (.8888*50) and 5 or 6 will fail (.1112*50).
2. What percentage of the class do you expect to receive a grade of between 60 and 70?
What you know: Y=60, =70, =9
p=.3665, p=.1335
A proportion of .3665 students or 36.65% should receive a grade of between 60 and 70.
3. What percentage of the class do you expect to receive a grade of between 70 and 80?
What you know: Y=80, =70, =9
p=.3665, p=.1335
A proportion of .3665 students or 36.65% should receive a grade of between 70 and 80.
4. What percentage of the class do you expect to receive a grade of between 50 and 59?
What you know: Y=50, Y=59, =70, =9
;
p=.4868, p=.0132; p=.3888, p=.1112
.4868-.3888=.098
A proportion of .098 students or 9.8% should receive a grade of between 50 and 59.
5. What percentage of the class do you expect to receive a grade of between 40 and 69?
What you know: Y=40, Y=69, =70, =9
;
p=.4996, p=.0004; p=.0438, p=.4562
.4996-.0438=.4558
A proportion of .4558 students or 45.58% should receive a grade of between 40 and 69.
6. What score do you have to get to be in the top 10% of the class?
What you know: =70, =9
10%→p=.10
Using Appendix B, column C, I know that the z score associated with a p=.10 is 1.28.
You need to score at least 81.52 to be in the top 10% of the class.
Estimation
7. As a researcher for the US Government, you are interested in predicting the mean age in the US. You generate a random sample (N=1,422) and discover that the mean for the sample is 44.54 years and the standard deviation is 17.03. Estimate the mean age for the US population. Specifically, what are the point estimate and confidence interval (99%)? Interpret the point estimate and confidence interval.
The Point estimate is 44.54 years of age
The confidence interval is: or (43.37, 45.71)
We expect that the mean age for the US population is 44.54 years of age (although we know that this is probably incorrect). We can be 99% certain that the true population mean for age is between 43.37 and 45.71 years of age. In 99 out of 100 samples, our confidence interval would contain the true population mean.
8. As an avid fan of Survivor (the TV show, not the band), you want to know what percent of the US population watched last season’s final episode. You generate a random sample (N=1,000) and discover that 19.3% of the sample watched the final episode. Estimate the percent for the US population. Specifically, what are the point estimate and confidence interval (95%)? Interpret the point estimate and confidence interval.
The point estimate is 19.3%
The confidence interval is: or (.169, .217)
This is the same as 19.3%±2.4% or (16.9%, 21.7%)
We expect that 19.3% of the US population watched the final episode (although we know this point estimate is probably wrong). We can be 95% certain that the true population percent is between 16.9% and 21.7%. In 95 out of 100 samples, our confidence interval would contain the true population percent.
Testing Hypotheses
9. As a researcher, you are interested in studying racial differences in family size - particularly in the number of children. You want to know if White or Black respondents have larger families. You think that there is a difference, but you don't know which group, on average, has more children. State your research and null hypotheses (using symbols) and select alpha (=.01). Use the following information to calculate the t statistic (assume that the variances are equal). Along the way, you’ll need to find the critical t value and the standard error for the difference in means. Should you reject or fail to reject the null hypothesis? What should you conclude?
race RACE OF RESPONDENT / N / Mean / Std. Deviation / Variance / Std. Error Meanchilds NUMBER OF CHILDREN / 1 WHITE / 1111 / 1.71 / 1.561 / 2.437 / .047
2 BLACK / 202 / 2.09 / 1.859 / 3.456 / .131
Null hypothesis:
Research hypothesis:
Alpha=.01
df = (N1 + N2) – 2 = 1111 + 202 – 2 = 1311
Critical t value = 2.576 (2 tailed hypothesis, alpha=.01, df=∞)
We reject the null hypothesis because the observed t value is greater than the critical t value. In other words, the difference in family size in our sample is larger than we would expect if there really is no difference in the population. We wouldn’t expect to get this sample difference very often if there is no difference in the population. Thus, we can conclude that there probably is a difference between White and Black respondents in family size in the US.
10. As a CEO and titan of industry, you are interested in predicting which presidential candidate will win the 2012 election (so that you can contribute a lot of money to their campaign and win their good graces). You hypothesize that more eligible voters will vote for Barack Obama (over Sarah Palin) and select an alpha of .05. You generate a random sample (N=500) and discover that 48% (N=240) of the sample plans to vote for Obama and 42% (210) of the sample plans to vote for Palin (the rest are not sure). What do the results suggest (i.e., who should get your money)? (HINT: Perform the z test to see if the difference in proportions is significant).
Null hypothesis:
Research hypothesis:
Alpha=.05
Critical z value = 1.645 (1 tailed hypothesis, alpha=.05)
We fail to reject the null hypothesis because the observed z value is not larger than the critical z value. In other words, the difference in proportions (percents) in the sample is not larger than we would expect if there really is no difference in the population. We would expect to get this sample difference pretty often if there is no difference in the population. Thus, we should contribute money to both candidates.
Page 1 of 3