Andrzej Pownuk - Math 4329 (Numerical Analysis)
Table of Contents
1Numerical integration
1.1Introduction
1.2Rectangle method
1.2.1Introduction
1.2.2Example calculate
1.2.3Calculate the following integral by using the rectangle method (use the left sum).
1.2.4Calculate the following integral by using the rectangle method for (use the right sum).
1.2.5Calculate the following integral by using the rectangle method (use the mid sum).
1.2.6Calculate the following integral by using rectangle method (use right sum).
1.2.7Error estimates
1.1.1(*) Calculate the integral by using the Reimann sums.
1.3Trapezoidal method
1.3.1Introduction
1.3.2Calculate the following integral by using the trapezoidal method .
1.3.3Calculate the following integral by using the trapezoidal method .
1.3.4Calculate the following integral by using trapezoidal method .
1.3.5Calculate the following integral by using trapezoidal method .
1.3.6Calculate the following integral by using trapezoidal method .
1.3.7Error estimation ,
1.3.8Error estimation ,
1.4Simpson method
1.4.1Introduction
1.4.2Calculate the following integral by using the Simpson's method .
1.4.3Calculate by using Simpson method for . (*)
1.4.4Calculate by using Simpson method for .
1.4.5Calculate by using Simpson method for .
1.4.6Calculate the following integral by using the Simpson's method .
1.4.7Calculate the following integral by using the Simpson's method .
1.4.8Calculate the following integral by using the Simpson's method .
1.5(*) Newton's Cotes method for n=3 (Simpson's 3/8 rule)
1.1.2Calculate the following integral
1.6(*) Forth order interpolation
1.1.3Calculate the following integral
1.1.4Calculate the following integral
1.7(*) Newton-Cotes integration
1.8Error in numerical integration
1.8.1(*) Generalized Mean Value Theorem
1.8.2Rectangle method - error for one interval (left or right sums)
1.8.3Rectangle method - error for n-intervals (left or right sums)
1.1.4.1Calculate the following integral by using rectangle method and estimate the error.
1.1.4.2Calculate the following integral by using rectangle method (right sum) and estimate the error.
1.1.4.3Calculate the following integral by using rectangle method (right sum) and estimate the error.
1.1.4.4Estimate the error of numerical integration for , n=4 and the Rectangle Method.
1.1.4.5Estimate the error of numerical integration for , n=4 and the Rectangle Method.
1.8.4Trapezoidal method -error for one interval
1.8.5Trapezoidal method -error for n intervals
1.1.4.6Calculate the following integral by using trapezoid method and estimate the error.
1.1.4.7Calculate the following integral by using trapezoid method and estimate the error.
1.1.4.8Estimate the error of numerical integration for , n=4 and the Trapezoid Method.
1.8.6Simpson's method-error for one interval
1.8.7Simpson's method-error for n intervals
1.1.4.9Estimate the error of numerical integration for , n=4 and the Simpson’s Method.
1.1.4.10Estimate the error of numerical integration for , n=4 and the Simpson’s Method.
1.9Gauss Numerical integration
1.9.1Table of Gauss integration points
1.9.2(*) How to derive Gauss integration formula
1.9.3Calculate by using 1 point Gauss integration
1.9.4Calculate by using 2 points Gauss integration
1.9.5Calculate by using 3 points Gauss integration
1.9.6Calculate by using 1 point Gauss integration
1.9.7Calculate by using 2 points Gauss integration
1.9.8Calculate by using 2 points Gauss integration
1.9.9Calculate by using 2 points Gauss integration
1.9.10Calculate by using 3 points Gauss integration
1.9.11Calculate by using 3 points Gauss integration
1.9.12Calculate by using 3 points Gauss integration
1.9.13Calculate by using 4 points Gauss integration
1.9.14Calculate by using 3 points Gauss integration
1.9.15Calculate by using 2 points Gauss integration
1.9.16Calculate by using two points Gauss integration.
1.9.17Calculate by using two points Gauss integration
1.9.18Calculate by using two points Gauss integration
1.9.19Calculate by using three points Gauss integration.
1.9.20Calculate by using 4 points Gauss integration.
1.9.21Calculate by using 4 points Gauss integration.
1.9.22Calculate by using 5 points Gauss integration.
1.9.23Calculate by using 5 points Gauss integration.
1.10Review
1.10.1Summer 2015
1Numerical integration
1.1Introduction
Method 1
Method 2
Plot[Exp[x^2],{x,0,1},Filling->Axis]
Integrate[Exp[x]*Sin[x]*Log[x]/(1+x^2) ,x]=?
~
Presented methods do not work for more complicated mathematical functions.
Function is not Riemann integrable.
1.2Interpolation methods
If then
Select nodes
Find and interpolation polynomial
1.3Method of undetermined coeficients
For the following formula
Test functions
For we have
For we have
For we have
Finally, it is necessary to solve the system of equations
With the solution
This is the formula for the Simpson’s method.
1.4Rectangle method
1.4.1Introduction
Left sums
Right sums
Mid sums
Rectangle method
Mean value theorem for the integral
Left sums
Right sums
Mid sums
1.4.2Example calculate
% left sum
a=0;
b=1;
n=10;
dx=(b-a)/n;
sum=0;
for i=1:n
x=a+(i-1)*dx;
sum=sum+x*x*dx;
end
disp(sum);
n / /10 / 0.28500 / 0.048333
100 / 0.32835 / 0.0049833
1000 / 0.33283 / 4.9983e-004
10000 / 0.33328 / 4.9998e-005
/*right sum*/
a=0;
b=1;
n=1000;
dx=(b-a)/n;
sum=0;
for i=1:n
x=a+i*dx;
sum=sum+x*x*dx;
end
disp(sum);
n / /10 / 0.38500 / 0.051667
100 / 0.33835 / 0.0050167
1000 / 0.33383 / 5.0017e-04
10000 / 0.33338 / 5.0002e-05
/*mid sum*/
a=0;
b=1;
n=1000;
dx=(b-a)/n;
sum=0;
for i=1:n
x=a+(i-0.5)*dx;
sum=sum+x*x*dx;
end
disp(sum);
n / /10 / 0.33250 / 8.3333e-04
100 / 0.33333 / 8.3333e-06
1000 / 0.33333 / 8.3333e-08
10000
1.4.3Calculate the following integral by using the rectangle method (use the left sum).
1.4.4Calculate the following integral by using the rectangle method for (use theright sum).
1.4.5Calculate the following integral by using the rectangle method (use the mid sum).
1.4.6Calculate the following integral by using rectangle method (use right sum).
1.4.7(*) Error estimates
Plot[{1/x,1/Sqrt[x]},{x,0,1}]
------
a=0;
b=1;
n=1000;
dx=(b-a)/n;
sum=0;
for i=1:n
x=a+(i)*dx;
sum=sum+(1/x)*dx;
end
disp(sum);
------
n /100 / 5.1874
1000 / 7.4855
10000 / 9.7876
100000 / 12.090
1.1.1(*) Calculate the integral by using the Reimann sums.
Conclusion
1.5Trapezoidal method
1.5.1Introduction
f[x_]=a+b*x;
XX=Solve[{f[x0]f0,f[x0+dx]f1},{a,b}];
g[x_]=Extract[f[x]/.XX,1]
Integrate[g[x],{x,x0,x0+dx}]
-(((f0-f1) x)/dx)-(-dx f0-f0 x0+f1 x0)/dx
(dx f0)/2+(dx f1)/2
f[x_] = x^2;
n = 10;
a = 0;
b = 1;
dx = (b - a)/n;
XX = Table[0 + i*dx, {i, 0, n}]
N[(Sum[f[XX[[i]]], {i, 2, n}] + (f[XX[[1]]] + f[XX[[n + 1]]])/2)*dx]
Result=
1.5.2Calculate the following integral by using the trapezoidal method .
1.5.3Calculate the following integral by using the trapezoidal method .
1.5.4Calculate the following integral by using trapezoidal method .
1.5.5Calculate the following integral by using trapezoidal method .
1.5.6Calculate the following integral by using trapezoidal method .
1.5.7Error estimation ,
1.5.8Error estimation ,
1.6Simpson method
1.6.1Introduction
f[x_] = a + b*x + c*x^2;
x1 = x0 + dx;
x2 = x0 + 2*dx;
Sol = Solve[{f[x0] == f0, f[x1] == f1, f[x2] == f2}, {a, b, c}];
g[x_] = Extract[f[x] /. Sol, 1]
Integrate[g[x], {x, x0, x2}]
Out[39]= -(((-f0 + 2 f1 - f2) x^2)/(2 dx^2)) - (
x (3 dx f0 - 4 dx f1 + dx f2 + 2 f0 x0 - 4 f1 x0 + 2 f2 x0))/(
2 dx^2) - (-2 dx^2 f0 - 3 dx f0 x0 + 4 dx f1 x0 - dx f2 x0 -
f0 x0^2 + 2 f1 x0^2 - f2 x0^2)/(2 dx^2)
Out[40]= (dx f0)/3 + (4 dx f1)/3 + (dx f2)/3------
(dx f0)/3+(4 dx f1)/3+(dx f2)/3
------
------
Different form of THE SAME formula.
for
1.6.2Calculate the following integral by using the Simpson's method .
1.6.3Calculate by using Simpson method for . (*)
1.6.4Calculate by using Simpson method for .
1.6.5Calculate by using Simpson method for .
In[340]:= N[(Sin[1]/1+4 Sin[2]/2+2 Sin[3]/3+4 Sin[4]/4+2 Sin[5]/5+4 Sin[6]/6+Sin[7]/7)*(1/3)]
Out[340]= 0.507117
1.6.6Calculate the following integral by using the Simpson's method .
1.6.7Calculate the following integral by using the Simpson's method .
1.6.8Calculate the following integral by using the Simpson's method .
Plot[Exp[x^2]*Sin[x],{x,0,4}]
1.6.9Calculate the following integral by using the Simpson's method .
1.6.10(*) Simpson method for cubic polynomial
Error of the composite rule
The Simpson method is accurate up to the polynomials of the degree 3.
1.7(*) Newton's Cotes method for n=3 (Simpson's 3/8 rule)
Clear[x0,x1,x2,x3,x,dx];
f[x_]=a+b*x+c*x^2+d*x^3;
x1=x0+dx;
x2=x0+2*dx;
x3=x0+3*dx;
Sol=Solve[{f[x0]f0,f[x1]f1,f[x2]f2,f[x3]f3},{a,b,c,d}];
g[x_]=Extract[f[x]/.Sol,1]
Integrate[g[x],{x,x0,x3}]
"Interpolation polynomial"
-(((f0-3 f1+3 f2-f3) x3)/(6 dx3))-(x2 (-2 dx f0+5 dx f1-4 dx f2+dx f3-f0 x0+3 f1 x0-3 f2 x0+f3 x0))/(2 dx3)-(x (11 dx2 f0-18 dx2 f1+9 dx2 f2-2 dx2 f3+12 dx f0 x0-30 dx f1 x0+24 dx f2 x0-6 dx f3 x0+3 f0 x02-9 f1 x02+9 f2 x02-3 f3 x02))/(6 dx3)-((-4 dx5 x04-6 dx4 x05-2 dx3 x06) ((x03 (dx+x0)2-x02 (dx+x0)3) (-f3 x03+f0 (3 dx+x0)3)-(-f1 x03+f0 (dx+x0)3) (x03 (3 dx+x0)2-x02 (3 dx+x0)3))-((x03 (dx+x0)2-x02 (dx+x0)3) (-f2 x03+f0 (2 dx+x0)3)-(-f1 x03+f0 (dx+x0)3) (x03 (2 dx+x0)2-x02 (2 dx+x0)3)) ((x03 (dx+x0)2-x02 (dx+x0)3) (x03 (3 dx+x0)-x0 (3 dx+x0)3)-(x03 (dx+x0)-x0 (dx+x0)3) (x03 (3 dx+x0)2-x02 (3 dx+x0)3)))/((-4 dx5 x04-6 dx4 x05-2 dx3 x06) ((x03 (dx+x0)2-x02 (dx+x0)3) (x03-(3 dx+x0)3)-(x03-(dx+x0)3) (x03 (3 dx+x0)2-x02 (3 dx+x0)3))-((x03 (dx+x0)2-x02 (dx+x0)3) (x03-(2 dx+x0)3)-(x03-(dx+x0)3) (x03 (2 dx+x0)2-x02 (2 dx+x0)3)) ((x03 (dx+x0)2-x02 (dx+x0)3) (x03 (3 dx+x0)-x0 (3 dx+x0)3)-(x03 (dx+x0)-x0 (dx+x0)3) (x03 (3 dx+x0)2-x02 (3 dx+x0)3)))
"integration scheme"
(3 dx f0)/8+(9 dx f1)/8+(9 dx f2)/8+(3 dx f3)/8
1.1.2Calculate the following integral
1.8(*) Forth order interpolation
Clear[dx,f0];
f[x_]=a+b*x+c*x^2+d*x^3+e*x^4;
x0=0;
x1=x0+dx;
x2=x0+2*dx;
x3=x0+3*dx;
x4=x0+4*dx;
Sol=Solve[{f[x0]f0,f[x1]f1,f[x2]f2,f[x3]f3,f[x4]f4},{a,b,c,d,e}]
g[x_]=Extract[f[x]/.Sol,1]
Integrate[g[x],{x,x0,x4}]
{{af0,b-((25 f0-48 f1+36 f2-16 f3+3 f4)/(12 dx)),c-((-35 f0+104 f1-114 f2+56 f3-11 f4)/(24 dx2)),d-((5 f0-18 f1+24 f2-14 f3+3 f4)/(12 dx3)),e-((-f0+4 f1-6 f2+4 f3-f4)/(24 dx4))}}
f0-((25 f0-48 f1+36 f2-16 f3+3 f4) x)/(12 dx)-((-35 f0+104 f1-114 f2+56 f3-11 f4) x2)/(24 dx2)-((5 f0-18 f1+24 f2-14 f3+3 f4) x3)/(12 dx3)-((-f0+4 f1-6 f2+4 f3-f4) x4)/(24 dx4)
(14 dx f0)/45+(64 dx f1)/45+(8 dx f2)/15+(64 dx f3)/45+(14 dx f4)/45
1.1.3Calculate the following integral
----
NIntegrate[Sin[x]/x,{x,0,4}]
1.7582
1.1.4Calculate the following integral
f[x_]=Sin[x]/x;
x0=0;
x1=1/2;
x2=1;
x3=3/2;
x4=2;
x5=5/2;
x6=3;
x7=7/2;
x8=4;
dx=1/2;
f0=1;
N[(14*f0+64*f[x1]+24*f[x2]+64*f[x3]+14*f[x4])*dx/45
+(14*f[x4]+64*f[x5]+24*f[x6]+64*f[x7]+14*f[x8])*dx/45]
1.7582
1.9Fifth order interpolation
Clear[dx, f0, f1, f2, f3, f4, f5];
f[x_] = a1 + a2*x + a3*x^2 + a4*x^3 + a5*x^4 + a6*x^5;
x0 = 0;
x1 = x0 + dx;
x2 = x0 + 2*dx;
x3 = x0 + 3*dx;
x4 = x0 + 4*dx;
x5 = x0 + 5*dx;
Sol = Solve[{f[x0] == f0, f[x1] == f1, f[x2] == f2, f[x3] == f3,
f[x4] == f4, f[x5] == f5}, {a1, a2, a3, a4, a5, a6}]
g[x_] = Extract[f[x] /. Sol, 1]
Integrate[g[x], {x, x0, x5}]
Out[305]= {{a1 -> f0,
a2 -> -((137 f0 - 300 f1 + 300 f2 - 200 f3 + 75 f4 - 12 f5)/(
60 dx)),
a3 -> -((-45 f0 + 154 f1 - 214 f2 + 156 f3 - 61 f4 + 10 f5)/(
24 dx^2)),
a4 -> -((17 f0 - 71 f1 + 118 f2 - 98 f3 + 41 f4 - 7 f5)/(24 dx^3)),
a5 -> -((-3 f0 + 14 f1 - 26 f2 + 24 f3 - 11 f4 + 2 f5)/(24 dx^4)),
a6 -> -((f0 - 5 f1 + 10 f2 - 10 f3 + 5 f4 - f5)/(120 dx^5))}}
Out[306]= f0 - ((137 f0 - 300 f1 + 300 f2 - 200 f3 + 75 f4 -
12 f5) x)/(
60 dx) - ((-45 f0 + 154 f1 - 214 f2 + 156 f3 - 61 f4 + 10 f5) x^2)/(
24 dx^2) - ((17 f0 - 71 f1 + 118 f2 - 98 f3 + 41 f4 - 7 f5) x^3)/(
24 dx^3) - ((-3 f0 + 14 f1 - 26 f2 + 24 f3 - 11 f4 + 2 f5) x^4)/(
24 dx^4) - ((f0 - 5 f1 + 10 f2 - 10 f3 + 5 f4 - f5) x^5)/(120 dx^5)
Out[307]= (95 dx f0)/288 + (125 dx f1)/96 + (125 dx f2)/144 + (
125 dx f3)/144 + (125 dx f4)/96 + (95 dx f5)/288
1.10(*) Newton-Cotes integration
Closed Newton–Cotes FormulaeDegree / Common name / Formula / Error term
1 / Trapezoid rule / /
2 / Simpson's rule / /
3 / Simpson's 3/8 rule / /
4 / Boole's rule / /
1.11Error in numerical integration
1.11.1(*) Generalized MeanValue Theorem
Let assume that the function are continuous on the closed interval and is nonnegative i.e. on the open interval , then for some point .
1.11.2Rectangle method - error for one interval (left or right sums)
(*) Error formula for the mid sum.
Interpolation error
Formula for one interval
For the interval
Finally, the error for one interval
1.11.3Rectangle method - error for n-intervals (left or right sums)
1.1.4.1Calculate the following integral by using rectangle method and estimate the error.
Error estimate
True error
1.1.4.2Calculate the following integral by using rectangle method (right sum) and estimate the error.
Error estimates
True error
Plot[1/x^2,{x,1,7}]
1.1.4.3Calculate the following integral by using rectangle method (right sum) and estimate the error.
Error estimate.
Plot[1/x^2,{x,0,1}]
1.1.4.4Estimate the error of numerical integration for , n=4 and the Rectangle Method.
Plot[2x+3,{x,-1,1}]
1.1.4.5Estimate the error of numerical integration for , n=4 and the Rectangle Method.
.
1.11.4Trapezoidal method -error for one interval
Mathematica script:
Integrate[((x-a)(x-b))/2,{x,a,b}]
1/12 (a-b)3
1.11.5Trapezoidal method -error for n intervals
Formula for multiple intervals
For continuous from the properties of arithmetic mean we have
for .
Finally
1.1.4.6Calculate the following integral by using trapezoid method and estimate the error.
Exact error
1.1.4.7Calculate the following integral by using trapezoid method and estimate the error.
Error estimates
Plot[2/x^3,{x,1,7}]
True error
1.1.4.8Estimate the error of numerical integration for , n=4 and the Trapezoid Method.
Plot[6x+6,{x,-1,1}]
1.11.6Simpson's method-error for one interval
Integration points
Simplify[Integrate[(x-a)(x-(a+b)/2)(x-b)/6,{x,a,b}]]
0
Let's add a new point . The error of integration for 4 points is the same as in the case of two points:
Simplify[Integrate[(x-a)(x-(a+b)/2)^2(x-b)/4!,{x,a,b}]]
(a-b)5/2880
1.11.7Simpson's method-error for n intervals
We know that
for .
then
Formula for error
1.1.4.9Estimate the error of numerical integration for , n=4 and the Simpson’s Method.
Verification
Clear[f,x];
f[x_]=x^3+3x^2-2;
x0=-1;x1=-1/2;x2=0;x3=1/2;x4=1;
dx=1/2;
(f[x0]+4*f[x1]+2*f[x2]+4*f[x3]+f[x4])*dx/3
Integrate[f[x],{x,-1,1}]
-2
-2
1.1.4.10Estimate the error of numerical integration for , n=4 and the Simpson’s Method.
1.12Gauss Numerical integration
1.12.1Table of Gauss integration points
.
Number of points, n / Points, xi / Weights, wi1 / 0 / 2
2 / / 1
3 / 0 / 8⁄9
/ 5⁄9
4 / /
5 / 0 / 128⁄225
- Gauss points
15 points (*)
weight - wi / abscissa - xi1 / 0.2025782419255613 / 0.0000000000000000
2 / 0.1984314853271116 / -0.2011940939974345
3 / 0.1984314853271116 / 0.2011940939974345
4 / 0.1861610000155622 / -0.3941513470775634
5 / 0.1861610000155622 / 0.3941513470775634
6 / 0.1662692058169939 / -0.5709721726085388
7 / 0.1662692058169939 / 0.5709721726085388
8 / 0.1395706779261543 / -0.7244177313601701
9 / 0.1395706779261543 / 0.7244177313601701
10 / 0.1071592204671719 / -0.8482065834104272
11 / 0.1071592204671719 / 0.8482065834104272
12 / 0.0703660474881081 / -0.9372733924007060
13 / 0.0703660474881081 / 0.9372733924007060
14 / 0.0307532419961173 / -0.9879925180204854
15 / 0.0307532419961173 / 0.9879925180204854
Mathematica script for one points Gauss integration
f[x_]=2x+1;
t0=0;
w0=2;
a=1;b=25;
"Exact"
NIntegrate[f[x],{x,a,b}]
"Gauss"
Simplify[N[w0*f[(b-a)*t0/2+(a+b)/2]*(b-a)/2]]
Exact
648.
Gauss
648.
Mathematica script for two points Gauss integration
f[x_]=x^2+1;
t0=-1/Sqrt[3];
t1=1/Sqrt[3];
w0=1;
w1=1;
a=0;b=1;
"Exact"
NIntegrate[f[x],{x,a,b}]
"Gauss"
Simplify[N[w0*f[(b-a)*t0/2+(a+b)/2]*(b-a)/2+w1*f[(b-a)*t1/2+(a+b)/2]*(b-a)/2]]
------
Exact
1.33333
Gauss
1.33333
Mathematica script for three points Gauss integration
f[x_]=x^2+1;
t0=Sqrt[3/5];
t1=0;
t2=-Sqrt[3/5];
w0=5/9;
w1=8/9;
w2=5/9;
a=0;b=1;
"Exact"
NIntegrate[f[x],{x,a,b}]
"Gauss"
Simplify[N[w0*f[(b-a)*t0/2+(a+b)/2]*(b-a)/2+w1*f[(b-a)*t1/2+(a+b)/2]*(b-a)/2]+
w2*f[(b-a)*t2/2+(a+b)/2]*(b-a)/2]
Exact
1.33333
Gauss
1.33333
1.12.2(*) How to derive Gauss integration formula
------
------
f0[x_]=1;
f1[x_]=x;
Solve[{Integrate[f0[x],{x,-1,1}]w0*f0[x0],
Integrate[f1[x],{x,-1,1}]w0*f1[x0]},{w0,x0}]
------
{{w02,x00}}
------
------
f0[x_]=1;
f1[x_]=x;
f2[x_]=x^2;
f3[x_]=x^3;
Solve[{Integrate[f0[x],{x,-1,1}]w0*f0[x0]+w1*f0[x1],
Integrate[f1[x],{x,-1,1}]w0*f1[x0]+w1*f1[x1],
Integrate[f2[x],{x,-1,1}]w0*f2[x0]+w1*f2[x1],
Integrate[f3[x],{x,-1,1}]w0*f3[x0]+w1*f3[x1]
},{w0,x0,w1,x1}]
------
{{w01,x01/,w11,x1-(1/)},{w01,x0-(1/),w11,x11/}}
1.12.3Calculate by using 1 point Gauss integration
Integrate[2x+1,{x,-1,1}]
2
1.12.4Calculate by using 2 points Gauss integration
1.12.5Calculate by using 3 points Gauss integration
1.12.6Calculate by using 1 point Gauss integration
1.12.7Calculate by using 2 points Gauss integration
1.12.8Calculate by using 2 points Gauss integration
1.12.9Calculate by using 2 points Gauss integration
1.12.10Calculate by using 2 points Gauss integration
1.12.11Calculate by using two points Gauss integration.
1.12.12Calculate by using two points Gauss integration
Integrate[Sin[x]/x,x]
------
SinIntegral[x]
1.12.13Calculate by using two points Gauss integration
1.12.14Calculate by using 3 points Gauss integration
1.12.15Calculate by using 3 points Gauss integration
1.12.16Calculate by using 3 points Gauss integration
N[(2*Sin(4))/3. + (5*Sin(4 - 3*Sqrt(0.6)))/(3.*(4 - 3*Sqrt(0.6))) +
(5*Sin(4 + 3*Sqrt(0.6)))/(3.*(4 + 3*Sqrt(0.6)))]
1.12.17Calculate by using 3 points Gauss integration
1.12.18Calculate by using three points Gauss integration.
1.12.19Calculate by using 3 points Gauss integration
Method 2
1.12.20Calculate by using 4 points Gauss integration
1.12.21Calculate by using 4 points Gauss integration.
1.12.22Calculate by using 4 points Gauss integration.
1.12.23Calculate by using 5 points Gauss integration.
1.12.24Calculate by using 5 points Gauss integration.
1.13(*) Monte Carlo method
1.14Review
1.14.1Summer 2015
Section 1.3 (trapezoidal)
Problem 1.3.4
Section 1.4 (Simpson)
Problem 1.4.4
Section 1.8 (Error)
Problem 1.1.4.8
Problem 1.1.4.10
Section 1.7 (Gauss)
Problem 1.9.7
Problem 1.9.10
1