Supplementary Information
Aqueous Emulsion Homo- and Co-polymerization of 1,3-Dienes and Styrene in the presence of Cp2TiCl2
Stefania Pragliola*, Teresa Acierno and Pasquale Longo
Dipartimento di Chimica e Biologia, Università di Salerno, Via Ponte don Melillo, I-84084 Fisciano (SA), Italy. Fax: +39 089 969603; Tel.:+39 089 969580; E-mail:
13 C NMR data of polymers:
13C NMR spectra of polybutadiene and polyisoprene samples pp2
13 CNMR chemical shift assignments pp3
13C NMR spectra of S/B and S/I co-polymer samples pp4
13C NMR chemical shift assignments pp5
13C NMR chemical shift assignments pp6
Evaluation of homo-polymers composition pp7
Evaluation of co-polymers composition pp8
13C NMR spectra of polybutadiene (a) and polyisoprene (b) samples of Table 1. (tetramethylsilane scale, CDCl3, RT)
TableI.13C NMR chemical shift assignments of polybutadiene samples
Structure unit / Carbon / Chemical Shift/ C/T-T1-C/T / 32.72
V-T1-C/T / 30.12
C/T-C1-C/T / 27.41
V-C1-C/T / 24.92
C/T-V1-C/T / 114.25
V-V1-V / 113.94
C/T-T2-C/T / 130.01
C/T-C2-C/T / 129.44
C/T-V2-C/T / 142.70
V-V2-V / 142.98
C/T-V3-C/T / 43.55
V-V3-V / 38.16
C/T-V4-C/T / 34.08
T = 1,4-trans butadiene unit; C = 1,4-cis butadiene unit; V = 1,2 butadiene unit; / = or; numbers are referred to carbons of designed structure units.
Table II. 13C NMR chemical shift assignments of polyisoprene samples
Structure unit / Carbon / Chemical Shift/ T-T1-T / 39.68
V-T1-T/C / 38.16
C-T1-T/C / 39.95
T/C-C1-T/C / 31.92
T/C-V1-T/C / 111.24
T/C-T2-T/C / 135.01
T/C-C2-T/C / 135.01
T/C-V2-T/C / 147.53
T/C-T3-T/C / 124.15
T/C-C3-T/C / 124.93
T/C-V3-T/C / 44.93
T/C-T4-T/C / 26.62
V-T4-T/C / 32.78
V-C4-T/C / 31.23
C/T-V4-T/C / 28.41
T/C-T5-T/C / 15.95
T/C-C5-T/C / 23.20
T/C-V5-T/C / 18.80
T = 1,4-trans isoprene unit; C = 1,4-cis isoprene unit; V = 3,4 isoprene unit; / = or; numbers are referred to carbons of designed structure units.
13C NMR of samples 2B (a) and 3I (b) of Table 2. (tetramethylsilane scale, CDCl3, RT)
Table III.13C NMR chemical shift assignments of S/B co-polymer samples
Structure unit / Carbon / Chemical Shift/ S-S1-S / 44.02-46.97
T-S1-S / 37.76
C-S1-S / 37.27
T-S1-T / 35.58
S-S2-S / 40.43
T-S2-S / 43.37
C-S2-S / 42.70
C/T/S-S3-C/T/S / 145.33
C/T/S-S4/S5-C/T/S / 128.0-130.4
C/T/S-S6-C/T/S / 125.70
C/T-T1-C/T / 32.65
S-T1-C/T/S / 39.17
C/T/S-T2/T3-C/T/S / 128.0-130.4
C/T/S-T4-S/V / 30.32
S-C1-C/T/S / 25.14
C/T-C1/C4-C/T / 27.17
C/T/S-C2/C3-C/T/S / 128.0-130.4
C/T/S-V1-C/T/S / 113.81
C/T/S-V2-C/T/S / 136.92
S/C/T-V3-C/T/S / 45.9-46.5
S/C/T-V4-C/T/S / 44.02-46.97
S = styrene unit; T = 1,4-trans butadiene unit; C = 1,4-cis butadiene unit; V = 1,2- butadiene unit; / = or; numbers are referred to carbons of designed structure units.
Table IV. 13C NMR chemical shift assignments of S/I co-polymer samples
Structure unit / Carbon / Chemical Shift/ S-S1-S / 43.60–47.00
T/C-S1-T/C / 35.79
T/C-S1-S / 43.58
V-S1-V / 48.10
S-T1-S/T/C / 38.50
T-T1-T / 39.74
T-T1-C / 40.37
S-C1-S / 29.69
T/C-C1-T / 31.92
T/C/S-V1-T/C/S / 111.30
S-S2-S / 40.41
C/T-S2-C/T / 42.00-43.58
S/T/C-T2/C2-S/T/C / 132.89-135.07
S/T/C-V2-S/T/C / 147.69
C/T/S-S3-C/T/S / 145.65
C/T/S-T3/C3-C/T/S / 124.19
T/C-V3-T/C / 47.65
S-V3-S / 48.10
C/T/S-S4/S5-C/T/S / 127.2-128.8
C/T/S-T4-S / 25.74
T-T4-T/C / 26.61-26.72
T/C-V4-T/C / 28.26
S/T/C-T5-S/T/C / 15.95
S/T/C-C5-S/T/C / 23.45
S/T/C-V5-S/T/C / 18.13
S/T/C-S6-S/T/C / 125.76
S = styrene unit; T = 1,4-trans isoprene unit; C = 1,4-cis isoprene unit; V = 1,2- isoprene unit; / = or; numbers are referred to carbons of designed structure units.
Evaluation of homo-polymers composition
Polybutadiene
Polybutadiene composition was evaluated comparing the areas under the peaks relative to saturated methylene carbons of 1,4-cis (C1 of Table I), 1,4-trans (T1 of Table I), and 1,2 (V3 of Table I)units and using the following equations:
T = (AT1)/2 / [(AT1 + AC1)/2 + AV3
C = (AC1)/2 / [(AT1 + AC1)/2 + AV3
V = (AV3)/2 / [(AT1 + AC1)/2 + AV3
Where:
T = molar fraction of butadiene 1,4-trans-units; C = molar fraction of butadiene 1,4-cis-units; V = molar fraction of butadiene 1,2-units; A = area under the peaks.
Polyisoprene
Polyisoprene composition was evaluated comparing the areas under the peaks relative to methyl carbons of 1,4-cis (C5 of Table II), 1,4-trans (T5 of Table II) and 3,4 (V5 of Table II) units and using the following equations:
T = (AT5) / (AT5 + AC5 + AV5)
C = (AC5) / (AT5 + AC5 + AV5)
V = (AV5) / (AT5 + AC5 + AV5)
Where:
T = molar fraction of isoprene 1,4-trans-units; C = molar fraction of isoprene 1,4-cis-units; V = molar fraction of isoprene 3,4-units; A = area under the peaks.
Evaluation of co-polymer composition
S/B co-polymers
Content of styrene and co-monomer in S/B co-polymers was evaluated using the following equations:
S = AS6 /[(AS4+S5+T2+T3+C2+C3) – 2S6]/2 + AV2] B = 1-S
TB = (AT1+T4/2) /[(AS4+S5+T2+T3+C2+C3) – 2AS6]/2 + AV2]
CB = (AC1+C4/2) /[(AS4+S5+T2+T3+C2+C3) – 2AS6]/2 + AV2]
VB = AV2 /[(AS4+S5+T2+T3+C2+C3) – 2AS6]/2 + AV2]
Where:
S6, S4, S5, T2, T3, C2, C3, V2 are referred to carbons of Table III
AS4+S5+T2+T3+C2+C3 = area between 128.0 ppm and 130.4 ppm
S = styrene molar fraction; B = 1,3-butadiene molar fraction; TB= molar fraction of butadiene 1,4-trans units; CB= molar fraction of butadiene 1,4-cis units; VB= molar fraction of butadiene 1,2 units.
S/I co-polymers
Content of styrene and co-monomer in S/I co-polymers was evaluated using the following equations:
S = AS6 /(AS6+ AT5+AC5+ AV5) I = 1-S
TI = = AT5 /(AS6+ AT5+AC5+ AV5)
CI = = AC5 /(AS6+ AT5+AC5+ AV5)
VI = AV5 /(AS6+ AT5+AC5+ AV5)
Where:
S6, T5, C5, V5 are referred to carbons of Table IV
S = styrene molar fraction; I = isoprene molar fraction; TI= molar fraction of isoprene 1,4-trans units; CI= molar fraction of isoprene 1,4-cis units; VI= molar fraction of isoprene 1,2 units.
1