Supplementary data to the manuscript
“Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum”
by Andreas Uhde#1, Jung-Won Youn#2, Tomoya Maeda1, Lina Clermont1, Christian Matano2, Reinhard Krämer1, Volker F. Wendisch2, Gerd M. Seibold*1 and Kay Marin1
1 Institute of Biochemistry, University of Cologne, Cologne, Germany
2 Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
# These authors contributed equally to this work
* Corresponding author. Mailing address: Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany. Phone: 49 (0)221 470 6464. Fax: 49 (0)221 470 5091. E-mail:
The supplementary data consist of two tables, three figures and contains the additional references cited within the supplementary data.
Table S1. Strains, plasmids and primers used and constructed in this study.
Strains
Escherichia coli DH5α (Invitrogen)
Corynebacterium glutamicum ATCC13032 (wild type)
Corynebacterium glutamicum M4 This study
Δhpr (Lindner et al., 2011)
ΔptsG Henrich (unpublished)
RES167 ΔptsF (Gaigalat, 2001)
IMptsS This study
IMptsX This study
Plasmids
pDrive (Qiagen, Hilden, Germany)
pDrive_IM_ptsS This study
pDrive_IM_ptsX This study
pVWEx1 (Peters-Wendisch et al., 2001)
pVWEx1-nagAB This study
pEKEx3 (Stansen et al., 2005)
pEKEx3-nagB This study
pEPR1 (Knoppova et al., 2007)
pEPR1_PnagAB_WT This study
pEPR1_PnagAB_M4 This study
pTXB1 (New England Biolabs)
pTXB1-nagB This study
Primer
nagAB_SbfI_fwd GTATCCTGCAGGGAAAGGAGGCCCTTCAGATG
nagAB_SmaI_rev GTACTGCCCGGGAAACGACGGCCAGTGAATTCG
nagA_PR_XbaI_fwd TCTAGAAAGCCATGGTGCTCCTTGT
nagA_PR_BamHI_rev GGATCCTTAGGGGGGTAACAATTCTTCC
Ex-nagB-fw-SbfI GCCCTGCAGGGAAAGGAGGCCCTTCAGATGGACATCATCATCTGCAA
Ex-nagB-rev-BamHI GCGGATCCTAGCGCAGCTTTAATTGCT
IM_ptsX_fwd CGCAGCAATACCTTGGAATG
IM_ptsX_rev GGTTATCGGTGGAGCAATCA
IM_ptsX_ctr CTGAGAATGTGGCTGCTGAG
IM_ptsS_fwd TGCCGTTGCGAAGATGAAGG
IM_ptsS_rev CATTGGCGGCGAAGACAACA
IM_ptsS_ctr GTGATCGCGGACGATAATAC
M13-FP TGTAAAACGACGGCCAGT
pTXB1-nagB-fw-Nde IGCCATATGGACATCATCATCTGCAA
pTXB1-nagB-rev-SapI
GGTGGTTGCTCTTCCGCAGCGCAGCTTTAATTGCTCCA
Table S2. Gene expression differences between C. glutamicum wild type and M4 during growth in complex medium LB
Genea Annotationa mRNA levelb
(M4/WT)
cg3237 / sodA, superoxide dismutase / 2.3cg3207 / pheA, prephenate dehydratase / 0.4
cg3169 / pck, phosphoenolpyruvate carboxykinase (GTP) / 2.3
cg3009 / hypothetical protein / 2.4
cg3008 / porA, Porin / 2.5
cg2958 / butA, L-2.3-butanediol dehydrogenase / 2.2
cg2929 / nagA, putative N-acetylglucosamine-6-phosphate deacetylase / 55.3
cg2928 / nagB, glucosamine-6-phosphate deaminase / 57.2
cg2256 / ABC-type transporter, ATPase component / 0.4
cg1931 / putative secretedprotein / 2.4
cg1821 / hypothetical protein / 2.2
cg1791 / gapA,glyceraldehyde-3-phosphate dehydrogenase / 2.3
cg1685 / tatX, Sec-independent protein secretion pathway component / 2.4
cg1682 / trypsin-like serine protease / 2.2
cg1368 / atpD, F0F1-type ATP synthase beta subunit / 2.6
cg1341 / narI, nitrate reductase gamma subunit / 0.2
cg0990 / rpmG, ribosomal protein L33 / 2.8
cg0949 / gltA, citrate synthase / 2.4
cg0821 / Hypothetical protein / 2.5
cg0810 / Hypothetical protein / 3.0
cg0768 / ABC-type transporter, ATPase component / 2.1
cg0631 / rpsE, ribosomal protein S5 / 3.2
cg0628 / rpsH, ribosomal protein S8 / 2.2
cg0602 / rpIP, ribosomal protein L16/L10E / 2.3
cg0601 / rpsC, ribosomal protein S3 / 2.5
cg0589 / ABC-type transporter, ATPase component / 2.4
cg0563 / rplK, ribosomal protein L11 / 2.6
cg0478 / Hypothetical protein / 0.3
cg0477 / Hypothetical protein / 0.1
cg0476 / murB2, putative UDP-N-acetylmuramate dehydrogenase / 0.4
aGene identifiers and annotations are given according to BX927147.
bThe mRNA levels were derived from a single cultivation.
Legends to the supplementary figures
Fig. S1. Growth (open triangles) and substrate depletion (circles) of C. glutamicum M4 mutant strain with a substrate mixture of 10 gl-1 glucose (solid circles) and 10 gl-1 glucosamine (open circles).
Fig. S2. Genomic locus of the M4 mutation site (boxed) upstream of the nagA gene in C. glutamicum. P1 and P2 are transcriptional start sites as they were determined by Engels et al., 2008.
Fig. S3. Growth of C. glutamicum mutant strains in CGXII minimal medium plus10 gl-1 glucosamine. Wild type (solid circles), ΔptsH (open triangles), ΔptsF (solid squares), ΔptsG (solid triangles), IMptsS (open circles) and IMptsX (open squares).
Figure S1
Figure S2
______
caacagcagg cctcaagtcc gaagataatt aacctaaatc cgtagacata
P1 P2
* *
agacatcata cgtcctatgc ttgctggaag gaagcaaata acctcagaaa
C
gatggcagaa gtggtgcatt atcaagaaaa tgcaggtcaa gcagttaaaa
|------nagA------►
______
Figure S3
References
Engels, V., T. Georgi & V. F. Wendisch, (2008) ScrB (Cg2927) is a sucrose-6-phosphate hydrolase essential for sucrose utilization by Corynebacterium glutamicum. FEMS Microbiol Lett 289: 80-89.
Gaigalat, L., (2001) Master Thesis. In.: University of Bielefeld, pp.
Knoppova, M., M. Phensaijai, M. Vesely, M. Zemanova, J. Nesvera & M. Patek, (2007) Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr Microbiol 55: 234-239.
Lindner, S. N., G. M. Seibold, A. Henrich, R. Krämer & V. F. Wendisch, (2011) Phosphotransferase System-Independent Glucose Utilization in Corynebacterium glutamicum by Inositol Permeases and Glucokinases. Appl Environ Microbiol 77: 3571-3581.
Peters-Wendisch, P. G., B. Schiel, V. F. Wendisch, E. Katsoulidis, B. Mockel, H. Sahm & B. J. Eikmanns, (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microb Biotech 3: 295-300.
Stansen, C., D. Uy, S. Delaunay, L. Eggeling, J. L. Goergen & V. F. Wendisch, (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71: 5920-5928.
8