Digital Circuit Design Assignment 3
1. Convert the following (unsigned) binary numbers to decimal numbers.
a. 000011
b. 0001011
c. 00010101
d. 011011
e. 01010101
f. 1011001
g. 11001100
h. 100100100
2. What is the largest number that can be represented in unsigned binary using:
a. 4 bits
b. two bits
c. 7 bits
d. five bits
e. 8 bits
f. eleven bits
3. How many bits do you need, using unsigned binary, to represent the Decimal number:
a. 22
b. 87
c. 34
d. 31
e. 300
f. 256
4. Convert each decimal number to unsigned binary.
a. 17
b. 43
c. 87
d. 9
e. 124
f. 358
5. Convert each binary number (not an integer) to decimal.
a. 110.1
b. 1100.11
c. 010.011
d. 101.101
e. 011.0101
6. Convert each decimal number to binary. Give me at least 6 bits after the binary point.
a. 2.5
b. 3.25
c. 4.75
d. 5.85
e. 6.95
f. 7.3
g. 8.56
7. Convert from Octal to Decimal.
a. 123
b. 156
c. 135
d. 437
8. Convert from Decimal to Octal
a. 123
b. 156
c. 135
d. 437
9. Convert from Hexadecimal to Decimal.
a. 123
b.12C
c. ABC
d. 1F0
e. ACE
f. DFA
10. Convert each Decimal number to Hexadecimal.
a. 123
b. 156
c. 135
d. 437
11. Convert each number from octal to Hexadecimal.
a. 123
b. 156
c. 135
d. 437
12. Convert each number from BCD to Binary.
a. 01111001
b.1000101
c. 01101001
d. 01010101
e. 10010110
f. 00110111
g. 01110101
13. Convert each Hexadecimal number to BCD
a. 124
b.13C
c. AAA
d. 33D
e. 1EB
f. DF3
14. Write the following Decimal numbers in 8-bit Signed Magnitude, 1’s Complement, and 2’s Complement Binary.
a. 37
b. -57
c. 126
d. -82
e. -63
f. -64
15. Write following 7-bit signed magnitude binary number in decimal form.
a. 0101011
b. 1010111
c. 0011011
d. 1101110
e. 1011001
16. Convert the following 8-bit 1’s Complement binary number to decimal.
a. 10101100
b. 01110110
c. 10100111
d. 10001011
e. 01010101
17. Assuming the number is in 9-bit 2’sComplement Binary form, express it in Decimal.
a. 011001010
b. 101011111
c. 011111101
d. 101010101
e. 001100011
f. 101100110
18. What range (tell me the most negative and most positive numbers) can we represent using:
a. 4-bit 1’s Complement
b. 9-bit Sign Magnitude
c. 6-bit 2’s Complement
d. 5-bit 1’s Complement
e. 7-bit 2’s Complement
f. 8-bit Sign Magnitude
g. 4-bit 2’s Complement
h. 9-bit 1’s Complement
i. 6-bit Sign Magnitude
j. 5-bit Sign Magnitude
k. 7-bit 1’s Complement
l. 8-bit 2’s Complement