Data. Yijk j = 1,...,r ; k = 1,...,c; i = 1,...,njk

GM Model. Y = X +  Dummy variables. 0-1

Factor - qualitative explanatory, R- partner status and C- autoritarianism

factor()

MODEL 0. Yijk =  + ijk

H0:  does not matter

data<-read.table("Moore.txt")

R<-factor(data[,1]);C<-factor(data[,3]);Y<-data[,2]

contrasts(R)<-contr.sum;contrasts(C)<-contr.sum

score.lm0<-lm(Y~1)

summary(score.lm0)

anova(score.lm0)

summary(score.lm0)

Call:

lm(formula = Y ~ 1)

Residuals:

Min 1Q Median 3Q Max

-8.1333 -4.1333 -0.1333 2.8667 11.8667

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.1333 0.7815 15.53 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.242 on 44 degrees of freedom

> anova(score.lm0)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 44 1209.2 27.482

prob-value, p-value: probability reject null hypothesis given true

MODEL 1. Yijk =  + j + ijk

H0: R does not matter

contrasts(R)<-contr.sum

score.lm1<-lm(Y~R)

summary(score.lm1)

anova(score.lm1)

summary(score.lm1)

Call:

lm(formula = Y ~ R)

Residuals:

Min 1Q Median 3Q Max

-7.2174 -2.9545 -0.2174 2.7826 14.0455

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.0860 0.7208 16.767 < 2e-16 ***

R1 2.1314 0.7208 2.957 0.00503 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 4.834 on 43 degrees of freedom

Multiple R-squared: 0.169,Adjusted R-squared: 0.1497

F-statistic: 8.744 on 1 and 43 DF, p-value: 0.005029

> anova(score.lm1)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

R 1 204.33 204.332 8.7437 0.005029 **

Residuals 43 1004.87 23.369

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

MODEL 2. Yijk =  + j + k + ijk

H0: C does not matter

contrasts(R)<-contr.sum;contrasts(C)<-contr.sum

score.lm2<-lm(Y~R+C)

summary(score.lm2)

anova(score.lm2)

summary(score.lm2)

Call:

lm(formula = Y ~ R + C)

Residuals:

Min 1Q Median 3Q Max

-7.7236 -3.1978 -0.1978 2.8831 13.8831

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.0821 0.7339 16.462 <2e-16 ***

R1 2.3033 0.7782 2.960 0.0051 **

C1 0.3381 1.0399 0.325 0.7468

C2 0.4190 1.0739 0.390 0.6985

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 4.922 on 41 degrees of freedom

Multiple R-squared: 0.1786,Adjusted R-squared:

> anova(score.lm2)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

R 1 204.33 204.332 8.4345 0.005906 **

C 2 11.61 5.807 0.2397 0.787944

Residuals 41 993.25 24.226

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

MODEL 3. Yijk =  + j + k + jk + ijk

H0: No interaction term

contrasts(R)<-contr.sum;contrasts(C)<-contr.sum

score.lm3<-lm(Y~R*C) #OR Y ~ R+C+R:C

summary(score.lm3)

anova(score.lm3)

summary(score.lm3)

Call:

lm(formula = Y ~ R * C)

Residuals:

Min 1Q Median 3Q Max

-8.6250 -2.9000 -0.2727 2.7273 11.3750

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.0508 0.7275 16.564 < 2e-16 ***

R1 2.4591 0.7275 3.380 0.00166 **

C1 0.1903 0.9987 0.191 0.84990

C2 1.0992 1.0264 1.071 0.29080

R1:C1 -2.8431 0.9987 -2.847 0.00701 **

R1:C2 1.7909 1.0264 1.745 0.08890 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 4.579 on 39 degrees of freedom

Multiple R-squared: 0.3237,Adjusted R-squared: 0.237

F-statistic: 3.734 on 5 and 39 DF, p-value: 0.007397

> anova(score.lm3)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

R 1 204.33 204.332 9.7448 0.003381 **

C 2 11.61 5.807 0.2770 0.759564

R:C 2 175.49 87.744 4.1846 0.022572 *

Residuals 39 817.76 20.968

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

These analyses are based on assumptions. These need to be checked.