Table 1 Examples of genes that could cause chromosomal instability (CIN) in cancers when mutated. The list includes some genes from S. cerevisiae for which a role in CIN has been proposed, but for which human homologs have not been described (italic). Genes are listed in only one category though some have several functions. Reviews are in red.

FunctionExamples

Chromatin Structure

DNA methylationDnmt11,2, DNMT23, DNMT3A4, DNMT3B4

DNA acetylationHD15, HD26, HDAC37

Chromatin condensationDNA topoisomerases (II 8, II 9, TOP310),

helicases11 (e.g., BLM12, WRN13)

Microtubules

Microtubule formation & motorsdynein and kinesin superfamilies14, dynactin15, tubulin16

Microtubule associated proteinsMAP family17-19, cytoplasmic linker proteins

(e.g., CLIP-17020), EB121, Stt421,

G-proteins22, CIN1, 2 and 423

Kinetochore

Kinetochore binding proteinsCENP-A, B, C, D, E, F, G24, 25; INCENPs26,27, CAS28, Cse229

Centrosomeaurora2/STK230, 31, PLK132, Nep133, NIMA-related kinases (e.g., NEK234)

Checkpoints

Mitotic spindle checkpointMAD135, MAD236, MAD2B37, BUB138, BUBR138, Bub239, BUB340, MPS1L1(TTK)41, 42, p55CDC43, 44, dma145

DNA damage checkpointATM46, chk147, ATR48, BRCA149, BRCA249, HsRad5150, XRCC151, XRCC252, XRCC352, p5353

Cell cycle regulatorsmitotic cyclins54

MAP kinases (e.g., p42 MAPK55)

CDKs and CDK inhibitors56, 57

Anaphase Promoting Complex

Complex forming proteinsApc158, cullins (APC259, CUL159, CUL359, CUL459, CUL559, CUL-260), Cdc27Hs(APC3)61, APC459, APC559, Cdc16Hs(APC6)61, APC759, CDC359,

CDC23(APC8)59, Apc1162, Cdc2663

Regulators of APCHct1/Cdh164, hCDC20/p55CDC65, CDC5L66,67

UbiquitinationNEDD868, UbcH1069

Chromatid cohesion

CohesinsScc1/Mcd170-72, Scc270, SB1.873, Smc274, HCAP75, Smc476, Mis472

Regulators of chromatid cohesionRCC177, Ase178, Pds179, Esp180, 81

1.Yen, R.W. et al. 1992. Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Res20: 2287-91.

2.Chen, R.Z., Pettersson, U., Beard, C., Jackson-Grusby, L. & Jaenisch, R. 1998. DNA hypomethylation leads to elevated mutation rates. Nature395: 89-93.

3.Yoder, J.A. & Bestor, T.H. 1998. A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast. Hum Mol Genet7: 279-84.

4.Okano, M., Xie, S. & Li, E. 1998. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet19: 219-20.

5.Taunton, J., Hassig, C.A. & Schreiber, S.L. 1996. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science272: 408-11.

6.Yang, W.M., Inouye, C., Zeng, Y., Bearss, D. & Seto, E. 1996. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci U S A93: 12845-50.

7.Yang, W.M., Yao, Y.L., Sun, J.M., Davie, J.R. & Seto, E. 1997. Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J Biol Chem272: 28001-7.

8.Tan, K.B. et al. 1992. Topoisomerase II alpha and topoisomerase II beta genes: characterization and mapping to human chromosomes 17 and 3, respectively. Cancer Res52: 231-4.

9.Jenkins, J.R. et al. 1992. Isolation of cDNA clones encoding the beta isozyme of human DNA topoisomerase II and localisation of the gene to chromosome 3p24. Nucleic Acids Res20: 5587-92.

10.Hanai, R., Caron, P.R. & Wang, J.C. 1996. Human TOP3: a single-copy gene encoding DNA topoisomerase III. Proc Natl Acad Sci U S A93: 3653-7.

11.Duguet, M. 1997. When helicase and topoisomerase meet! J Cell Sci110: 1345-50.

12.Ellis, N.A. et al. 1995. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell83: 655-66.

13.Fry, M. & Loeb, L.A. 1998. The three faces of the WS helicase. Nat Genet19: 308-9.

14.Barton, N.R. & Goldstein, L.S. 1996. Going mobile: microtubule motors and chromosome segregation. Proc Natl Acad Sci U S A93: 1735-42.

15.Gaglio, T., Dionne, M.A. & Compton, D.A. 1997. Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes. J Cell Biol138: 1055-66.

16.Byard, E.H. & Lange, B.M. 1991. Tubulin and microtubules. Essays Biochem26: 13-25.

17.Block, S.M. 1998. Kinesin: what gives? Cell93: 5-8.

18.Lohman, T.M., Thorn, K. & Vale, R.D. 1998. Staying on track: common features of DNA helicases and microtubule motors. Cell93: 9-12.

19.Maccioni, R.B. & Cambiazo, V. 1995. Role of microtubule-associated proteins in the control of microtubule assembly. Physiol Rev75: 835-64.

20.Dujardin, D. et al. 1998. Evidence for a role of CLIP-170 in the establishment of metaphase chromosome alignment. J Cell Biol141: 849-62.

21.Muhua, L., Adames, N.R., Murphy, M.D., Shields, C.R. & Cooper, J.A. 1998. A cytokinesis checkpoint requiring the yeast homologue of an APC- binding protein. Nature393: 487-91.

22.Clevenger, C.V. 1994. Role of tubulin-associated G-proteins during mitosis. Lab Invest71: 155-7.

23.Stearns, T., Hoyt, M.A. & Botstein, D. 1990. Yeast mutants sensitive to antimicrotubule drugs define three genes that affect microtubule function. Genetics124: 251-62.

24.Grancell, A. & Sorger, P.K. 1998. Chromosome movement: kinetochores motor along. Curr Biol8: R382-5.

25.Earnshaw, W.C. & Cooke, C.A. 1989. Proteins of the inner and outer centromere of mitotic chromosomes. Genome31: 541-52.

26.Mackay, A.M., Ainsztein, A.M., Eckley, D.M. & Earnshaw, W.C. 1998. A dominant mutant of inner centromere protein (INCENP), a chromosomal protein, disrupts prometaphase congression and cytokinesis. J Cell Biol140: 991-1002.

27.Mackay, A.M., Eckley, D.M., Chue, C. & Earnshaw, W.C. 1993. Molecular analysis of the INCENPs (inner centromere proteins): separate domains are required for association with microtubules during interphase and with the central spindle during anaphase. J Cell Biol123: 373-85.

28.Brinkmann, U., Brinkmann, E., Gallo, M. & Pastan, I. 1995. Cloning and characterization of a cellular apoptosis susceptibility gene, the human homologue to the yeast chromosome segregation gene CSE1. Proc Natl Acad Sci U S A92: 10427-31.

29.Xiao, Z., McGrew, J.T., Schroeder, A.J. & Fitzgerald-Hayes, M. 1993. CSE1 and CSE2, two new genes required for accurate mitotic chromosome segregation in Saccharomyces cerevisiae. Mol Cell Biol13: 4691-702.

30.Zhou, H. et al. 1998. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet20: 189-93.

31.Bischoff, J.R. et al. 1998. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. Embo J17: 3052-65.

32.Wolf, G. et al. 1997. Prognostic significance of polo-like kinase (PLK) expression in non- small cell lung cancer. Oncogene14: 543-9.

33.Fry, A.M., Schultz, S.J., Bartek, J. & Nigg, E.A. 1995. Substrate specificity and cell cycle regulation of the Nek2 protein kinase, a potential human homolog of the mitotic regulator NIMA of Aspergillus nidulans. J Biol Chem270: 12899-905.

34.Schultz, S.J., Fry, A.M., Sutterlin, C., Ried, T. & Nigg, E.A. 1994. Cell cycle-dependent expression of Nek2, a novel human protein kinase related to the NIMA mitotic regulator of Aspergillus nidulans. Cell Growth Differ5: 625-35.

35.Jin, D.Y., Spencer, F. & Jeang, K.T. 1998. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell93: 81-91.

36.Li, Y. & Benezra, R. 1996. Identification of a human mitotic checkpoint gene: hsMAD2. Science274: 246-8.

37.Cahill, D.P., da Costa, L.T.C., Kinzler, K.W., Vogelstein, B. & Lengauer, C. Characterization of hMAD2B and other mitotic spindle checkpoint genes. Submitted.

38.Cahill, D.P. et al. 1998. Mutations of mitotic checkpoint genes in human cancers. Nature392: 300-3.

39.Hoyt, M.A., Totis, L. & Roberts, B.T. 1991. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell66: 507-17.

40.Taylor, S.S., Ha, E. & McKeon, F. 1998. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J Cell Biol142: 1-11.

41.Mills, G.B. et al. 1992. Expression of TTK, a novel human protein kinase, is associated with cell proliferation. J Biol Chem267: 16000-6.

42.Hogg, D. et al. 1994. Cell cycle dependent regulation of the protein kinase TTK. Oncogene9: 89-96.

43.Prinz, S., Hwang, E.S., Visintin, R. & Amon, A. 1998. The regulation of Cdc20 proteolysis reveals a role for APC components Cdc23 and Cdc27 during S phase and early mitosis. Curr Biol8: 750-60.

44.Kallio, M., Weinstein, J., Daum, J.R., Burke, D.J. & Gorbsky, G.J. 1998. Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J Cell Biol141: 1393-406.

45.Murone, M. & Simanis, V. 1996. The fission yeast dma1 gene is a component of the spindle assembly checkpoint, required to prevent septum formation and premature exit from mitosis if spindle function is compromised. Embo J15: 6605-16.

46.Rotman, G. & Shiloh, Y. 1998. ATM: from gene to function. Hum Mol Genet7: 1555-63.

47.Sanchez, Y. et al. 1997. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science277: 1497-501.

48.Smith, L. et al. 1998. Duplication of ATR inhibits MyoD, induces aneuploidy and eliminates radiation-induced G1 arrest. Nat Genet19: 39-46.

49.Zhang, H., Tombline, G. & Weber, B.L. 1998. BRCA1, BRCA2, and DNA damage response: collision or collusion? Cell92: 433-6.

50.Ivanov, E.L. & Haber, J.E. 1997. DNA repair: RAD alert. Curr Biol7: R492-5.

51.Thompson, L.H., Brookman, K.W., Jones, N.J., Allen, S.A. & Carrano, A.V. 1990. Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol Cell Biol10: 6160-71.

52.Liu, N. et al. 1998. XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol Cell1: 783-93.

53.Lane, D. 1998. Awakening angels. Nature394: 616-7.

54.Paulovich, A.G., Toczyski, D.P. & Hartwell, L.H. 1997. When checkpoints fail. Cell88: 315-21.

55.Guadagno, T.M. & Ferrell, J.E., Jr. 1998. Requirement for MAPK Activation for Normal Mitotic Progression in Xenopus Egg Extracts. Science282: 1312-1315.

56.Andrews, B. & Measday, V. 1998. The cyclin family of budding yeast: abundant use of a good idea. Trends Genet14: 66-72.

57.Hunter, T. & Pines, J. 1994. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell79: 573-82.

58.Starborg, M., Brundell, E., Gell, K. & Hoog, C. 1994. A novel murine gene encoding a 216-kDa protein is related to a mitotic checkpoint regulator previously identified in Aspergillus nidulans. J Biol Chem269: 24133-7.

59.Yu, H. et al. 1998. Identification of a cullin homology region in a subunit of the anaphase- promoting complex. Science279: 1219-22.

60.Pause, A. et al. 1997. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci U S A94: 2156-61.

61.Tugendreich, S., Tomkiel, J., Earnshaw, W. & Hieter, P. 1995. CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell81: 261-8.

62.Zachariae, W. et al. 1998. Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. Science279: 1216-9.

63.Araki, H., Awane, K., Ogawa, N. & Oshima, Y. 1992. The CDC26 gene of Saccharomyces cerevisiae is required for cell growth only at high temperature. Mol Gen Genet231: 329-31.

64.Schwab, M., Lutum, A.S. & Seufert, W. 1997. Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell90: 683-93.

65.Kramer, E.R., Gieffers, C., Holzl, G., Hengstschlager, M. & Peters, J.M. 1998. Activation of the human anaphase-promoting complex by proteins of the CDC20/Fizzy family [In Process Citation]. Curr Biol8: 1207-10.

66.Groenen, P.M., Vanderlinden, G., Devriendt, K., Fryns, J.P. & Van de Ven, W.J. 1998. Rearrangement of the human CDC5L gene by a t(6;19)(p21;q13.1) in a patient with multicystic renal dysplasia. Genomics49: 218-29.

67.Shirayama, M., Zachariae, W., Ciosk, R. & Nasmyth, K. 1998. The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae. Embo J17: 1336-49.

68.Kamitani, T., Kito, K., Nguyen, H.P. & Yeh, E.T. 1997. Characterization of NEDD8, a developmentally down-regulated ubiquitin- like protein. J Biol Chem272: 28557-62.

69.Townsley, F.M., Aristarkhov, A., Beck, S., Hershko, A. & Ruderman, J.V. 1997. Dominant-negative cyclin-selective ubiquitin carrier protein E2- C/UbcH10 blocks cells in metaphase. Proc Natl Acad Sci U S A94: 2362-7.

70.Michaelis, C., Ciosk, R. & Nasmyth, K. 1997. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell91: 35-45.

71.Guacci, V., Koshland, D. & Strunnikov, A. 1997. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell91: 47-57.

72.Furuya, K., Takahashi, K. & Yanagida, M. 1998. Faithful anaphase is ensured by mis4, a sister chromatid cohesion molecule required in S phase and not destroyed in G1 phase. Genes Dev12: 3408-18.

73.Rocques, P.J. et al. 1995. The human SB1.8 gene (DXS423E) encodes a putative chromosome segregation protein conserved in lower eukaryotes and prokaryotes. Hum Mol Genet4: 243-9.

74.Strunnikov, A.V., Hogan, E. & Koshland, D. 1995. SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev9: 587-99.

75.Shimizu, K., Shirataki, H., Honda, T., Minami, S. & Takai, Y. 1998. Complex formation of SMAP/KAP3, a KIF3A/B ATPase motor-associated protein, with a human chromosome-associated polypeptide. J Biol Chem273: 6591-4.

76.Kimura, K. & Hirano, T. 1997. ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell90: 625-34.

77.Ohtsubo, M. et al. 1987. Isolation and characterization of the active cDNA of the human cell cycle gene (RCC1) involved in the regulation of onset of chromosome condensation. Genes Dev1: 585-93.

78.Juang, Y.L. et al. 1997. APC-mediated proteolysis of Ase1 and the morphogenesis of the mitotic spindle. Science275: 1311-4.

79.Yamamoto, A., Guacci, V. & Koshland, D. 1996. Pds1p is required for faithful execution of anaphase in the yeast, Saccharomyces cerevisiae. J Cell Biol133: 85-97.

80.Baum, P., Yip, C., Goetsch, L. & Byers, B. 1988. A yeast gene essential for regulation of spindle pole duplication. Mol Cell Biol8: 5386-97.

81.Ciosk, R. et al. 1998. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell93: 1067-76.