Copyright©2011AmericanScientificPublishers

Allrightsreserved

PrintedintheUnitedStatesofAmerica

AdvancedScienceLetters

Vol.4,3398–3402,2011

PlanarField EmissionCurrentfrom

IndividualCarbonNanotubes

Cheng-KuangHuang, RuiZhu,Qiang Fu,QingZhao∗,and DapengYu∗

StateKeyLaboratory forMesoscopicPhysicsandElectron MicroscopyLaboratory, DepartmentofPhysics,Peking University, Beijing100871,People’sRepublic ofChina

Carbonnanotube(CNT)planar fieldemitterswere fabricatedonaSiO2/Sisubstrate.The anode,cathodeand CNTalllayon the samesubstrateforthe promising advantageofintergratibilitywithplanar technology.The emissioncurrent wasacquiredinascanningelectronmicroscope(SEM).Despitetheasymmetry(tip-electrode) ofourfieldemissionsample,asymmetricalI–VcurveconsistentwiththeFowler-Nordheimtheorywasacquired. Using Zener theory on quantumtunneling ininsulators,the observed phenomenonwasexplainedto be a possibleleakagecurrent through theinsulating SiO2 instead ofrealfieldemission.Moreover, thesimulatedlocal electric fieldsatthe emitter apex excludethe possibilityofan accountableemissioncurrent. Ourresultsare of great importanceinstudying planar fieldemissionsince itdrawsattentiontoavoid mistaking leakagecurrent fortheactual fieldemissioncurrent inplanar fieldemissiondevices.

Keywords: PlanarField Emission,CarbonNanotube,Leakage Current, Zener Tunneling, Finite Element

Method.

Received:11March2011.Accepted:14March2011.

1. INTRODUCTION

The field induced emission of electrons from cold cathodes is a well understoodphenomenonand is, at present,still an activeresearchareaformanyone-dimensional nanowiresand nanotubes.1–8 Twoimportantparametersdeterminingtheperfor- manceofafieldemitter:theradiusofcurvatureoftheemitter tip,andtheaspectratiooftheemitter:generally, thesharperthe emitter,thebetterthefieldemission properties. Carbonnano- tubes(CNTs)areobviouslythemostprospective candidatesas fieldemitterswiththeverysmallradiuscurvature ofthetipon nanoscaleandverylargeaspectratio.Acknowledging this,CNT fieldemitters havedrawnmuchattention lately,andhavebeen demonstratedtohaveoutstandingfieldemissionproperties.9–15

Theyareshowncapableofdelivering1 ApersingleCNTand highcurrentdensityinexcessof1A/cm2.

Mostofthepioneer worksontheCNTfieldelectron emitters weredesignedwithintheframework ofthetraditional vacuum tubes.Thethree-dimensional tip-to-electrodesetupwasadopted; theanodeandthecathodeareseparatedbyahighvacuumempty space(Fig.1(a)).Planarfieldemission ingeneral,isthefield emission achieved onand/oracrossasubstrate; itischaracter- izedbythefactthatthecathode,theanode,andtheemitterslay onaninsulatingsubstrate.16 Sotheelectronemissionisreduced fromthree-dimensionaltotwo-dimensional.Figures1(b)and(c) illustratestheseplanardevices:(b)isthesocalledtip–tip(or

∗Authorstowhomcorrespondenceshouldbeaddressed.

bilateral)configuration and(c)isthetip-electrode(orunilateral) configuration. Thebenefitsofsuchadesignincludeusageof thinnerCNTemitters,integratabilitywithplanartechnology, sta- bleconstruction, andetc.Theconceptisidealfortheincorpora- tionof emitterdevicesintointegratedcircuits.However,it is only untilrecently—withthedevelopmentofnanotechnology andthe adventofsophisticated instrumentsandfabricationtechniques— thatdevicesbasedontheideawererealized.17

Manyrecentreportsonplanarfieldemission havechosento assembletheemitterandelectrodesondopedSiwaferswith aSiO2 insulatinglayer(typicallyafewhundrednanometersin

thickness).1618–22 Employingsuchconstructions,agatevoltage

canbeapplied,whichcanincreasethefunctional optionsofthe fieldemitterdevice.Theinherent problem withsuchaconstruc- tionisthatleakagecurrentthroughtheinsulator isveryeasily neglected. Inthisreport,asignificant leakagewasfoundinthe insulator layerinourplanarfieldemission devicebasedonindi- vidualCNT.Furthermore,theI–Vrelationcloselyresemblesthat of fieldemissionwithsimilarFowler-Nordheim(FN)plots.Thus, onecaneasilymistaketheobtained currentforactualfieldemis- sionphenomenon. Possiblereasonswerecarefullyanalyzedfor theobservedresults.And suggestionswere giveninordertocon- firmtheexperimentaldatatoberealfieldemission.

2. EXPERIMENTALDETAILS

TheCNTsinthisinvestigation weregrownviaachemicalvapor deposition (CVD) method23 on a pre-marked, highly doped,

3398 Adv. Sci. Lett. Vol.4,No.11/12, 2011 1936-6612/2011/4/3398/005 doi:10.1166/asl.2011.2049

Fig.1. Anillustration ofa traditional vacuumfieldemissionsetupcharacterizedby twotopologically separated electrodes.(b) and (c) are twopossible configurationsofa planar fieldemissiondevice: (b)withtwoopposingemitter isthe tip–tip(orbilateral) configuration.And(c)withonlyone emitter is the tip-electrode(orunilateral) configuration;theplanar devicesare characterizedbythefactthattheelectrodesshareacommonsubstrate.

Si substrate covered with a 500 nm SiO2 insulating layer. Thismethodproduces roughlystraightCNTslyingalongthe samedirection,convenient forproducingplanarfieldemitters. Figure2(a)istheSEMmicrograph oftheas-grownCNTonthe premarkedsubstrate.

Forthemeasurement offieldemissioncurrent,Ti(20nm)/Au (30nm)electrodes weredeposited ontheindividual as-grown CNTsusingstandardelectronbeamlithography (EBL)andlift- offprocess.Similartotheworkpreviouslyreported,16 sharply tippedglassneedleswereemployedincuttingtheCNTunder an optical microscope (Fig. 2(b)). Our procedures produced a tip-electrode planar CNT emitter like those illustrated in Figure1(c);thesurfacemorphologyofthepreparedCNT emitter

wascharacterized withanatomicforcemicroscope(SEIKO SPI3800N) undercontactmode(Fig.2(b)).TheCNTemitter apparently foldedbackuponitselfatthetip;thesurfaceanalysis ofanuncoupledpart(blue arrow)andtheapex(redarrow)ofthe emitterrevealsadiameter of∼3.6nm(bluebox)and∼3.9nm (redbox)respectively. Hence,consideringuncertainties andthe coupling, theapparentapexdiameterisestimated tobe∼9nm. Thelengthoftheemitterisapproximately2.6 m;therefore, givinganaspectratioofabout289.

I–Vmeasurements oftheplanarfieldemissioncurrentonthe individual CNTwereconducted inaSEMchamberunderavac- uumof2×10−6 Torr.AKeithley-6430Sub-FemtoampRemote SourceMetertogetherwithitspre-amplifierwasusedtoapply

Fig.2. TheSEMmicrographoftheas-grownCNTs,layingalone thesamedirection ontheSiO2/Sisubstrate.(b)Anillustrated demonstrationshowing CNT emittersreadily fabricatedwiththe use ofglassneedletipsunder an optical microscope.(c)AFMmicrographofourpreparedCNTemitter: the colorboxes are surfaceanalysis,they correspondtothe site ofthe colorarrows onthe image. The CNTdiameteris∼3.6 nm(bluebox),however,due toafoldingback oftheCNTatthetip,theapparentdiameterisovertwicetheactual CNTdiameter(redbox).

3399

Fig.3. An illustration of the measurment setup in a SEM with a vac- uum environment of 10−6 Torr; a keithley-6430Sub-FemtoampRemote SourceMeterwasused to sourcethe voltage and measurethe current. (b) The SEM micrographofthe testedplanar CNTemitter before current acquisition.

thevoltageandmeasure theemission current;thevoltagewas ramped in steps of 1 V. The peripheral circuit resistance of oursetupwaslessthan5Ohm.Theelectronbeamwasini- tially used to determinethe tip-electrodedistance(∼14 m) thensubsequentlyturnedofffortheemission currentacquisition. Figure3(a)isaschematicillustrationofthecurrentmeasurement setup,andtheSEMmicrographofthetestedplanarCNTemitter isshowninFigure3(b).

3. RESULTS ANDDISCUSSION

Figure4(a)showsthemeasuredI–Vcurve:theforwardcurve istheobtained currentwhenanegative biasisappliedonthe emitter partandthereverse curvetheviceversa.Theonsetvolt- ageat1nAwasaround10V.Comparingtheresultstothe

115Vonsetvoltageofasimilarlythintraditional singleCNT emitter,withatip-electrodedistanceofamere1 m,reported byBonardetal.,11 theapparentimprovement offieldemission propertiesisquitesignificant. Theonsetvoltageofourplanar CNTemitters ismuchsmallerthanmostofthereported CNT emittersintraditionalsetups.1124–26 TheobtainedI–Vimpliesa bilateralemissioninnature;itbearsresemblance tothatprevi- ouslyobtainedfromatip–tipconfiguration inplanarfieldemis- siondevicesbySong16 andWang.27 Moreover,complyingwith theFowler-Nordheimtheory,2829 theFNplot(insetofFig.4(a)) ofthecurvedoesrevealalineartrendatemission fieldstrengths. Soifitisrealfieldemission,theimprovement issignificant. However,considering thefactthatanasymmetric tip-electrode configurationwas deliberatelyprepared(Fig. 1(c)), the result seemsabsurd,sinceitshouldgivecurrentonlywhennegative biaswasappliedontheCNT,andnoemission currentwhen positivevoltagewasapplied.Thesymmetricshapeofthecurve

Fig.4. I–Vcurve acquiredfromthe planar CNT. The forward curve isin the sensethat a negativebias isapplied on the emitter. The inset shows the correspondingFNplotofthe emissiondata; the linearitycomplies with theFNtheory. (b)isanillustrationofanelectronwithenergy−W tunneling through the fieldtiltedbands;Eg isthe band gap (here, analogoustothe workfunction (c)isthe current (ej),calculatedfromZener’sexpression, tunneling intothe conductionband versusthe applied field;the inset shows thecorrespondingFNplot.

Fisconventionally writtenas:F= V/d:Vistheappliedvolt- age, isthegeometricenhancementfactor,andd isthetip- electrodedistance.ThelawrelatingIandFisthuswrittenas29

makesusassumealeakagecurrentmightexistbetweentheelec-

15×10−6 V

2exp

104

×exp

644×109 15d

trodesthroughtheinsulatingSiO2 layer,forleakagecurrentis

independentofthedirectionofbiasvoltage.Nevertheless,this

I=A d

V

(1)

alonecannotaccountfortheconsistencyoftheI–Vwithfield

emissiontheory.

TheFNfieldemissiontheoryisbasicallytherationalization ofthequantumtunnelingphenomenon.28 Thetheoryhasbeen provedusefulindescribingtherelationship betweenthefield emissioncurrentI andthelocalfieldF attheemittersurface.

whereA hasthedimensionofanaream2 and isthework function ineVoftheemitting material. FromEq.(1)itcanbe observedthatiflnI/V2 isplottedagainstI/V,then,atemis- sionfieldrange,onewillarriveatalinearfunctionwithaslope

−644×102 15d/ ;thisisthesocalledFNplot.Byfittingthe

experimentaldatainaFNplot,either orthefieldenhancement

3400

Adv. Sci. Lett. 4,3398–3402,2011

factor canbedetermined.Usuallyitistheenhancementfactor thatiscalculatedfor,sinceitisameasureofemitterperformance. TheFNplothasalsobeenusedoverthepastasasupporting evidenceforfieldemission.Despite this,thefollowingparagraph willproveittobeonlyanecessaryconditionforfieldemission. Returningtothequestionathand,withtheFNlawinmind, ourobservedcurrent should alsobeexpressibleinarelation sim- ilartoEq.(1)toshowsuchanalogousbehaviorasfieldemission. Infact,thephenomenonisknownasinternalfieldemissionof insulators;itwasfirsttreatedbyZenerin1935.30 Theideais basicallyshowninFigure4(b),anenergylevelversusposition illustrationforinsulatorsorsemiconductorswithabandgapEg betweenthevalenceandconductionband.Uponapplicationof anelectricfield,thebandgapedgesbecometiltedinspace.An electronwithenergy−W withrespecttothevalancebandedge canmaketransitionstotheconductionbandnotonlyvertically (requiringanenergyEg+W),butalsohorizontally,owingto theappliedfield.Namely,thevalenceelectronscantunnelintoa currentcarryingbandstate.Theexpressionderivedlimitingthe rateoftransitionis,asexpected,anexponential.Itiswrittenas

RESEARCH ARTICLE

Fig.5. Thesliceplotofcalculatedlocalfieldsforbothconfigurations.Asit isshown, forthetraditionalconfigurationthetipfieldisaround5times larger than theplanar setup.

asinglestandingCNT:1.45 minlength,a7.5nmradius,and anapproximately1 mtip-electrodedistance.Meanwhile,the modelbentCNTforplanarconfigurationinourcase,lyingon a500nmthickSiO2,is5nminradiusandroughly2 mlong

eFa

j exp

h

2 ma2

−h2 ∗eF∗

(2)

withatip-electrodedistanceofabout14 m.Ahemispherical

capwasdrawntomodelthetipheadforbothcases.Thevolt- ageappliedontheemitterischosenas115Vsoastomodel

whereaisthespatialperiodicityofelectronpotentialenergy,

mistheelectron mass,Eg istheenergybandgap,andFisthe appliedlocalfield.Intuitively,theelectricfieldFherecanalso berelatedtotheappliedvoltagethroughananalogousenhance-

theonsetvoltage(thevoltagerequiredtoextractacurrentof

1nA)reportedbyBonardetal.11 Thecalculatedfieldattheapex ofthefreestandingmodelandplanarmodelwas∼5×109 and

9

mentfactor.Figure4(c)isaplotofcurrentI(electroniccharge

∼1×10

V/mrespectively(Fig.5).Theelectricfieldattheapex

e×Eq. (2))versuselectricfieldconsideringreasonablevaluesfor theparametersinourexperimentalsetup:a=50×10−9m(pre- sumingthinneramorphousSiO2atleakagesites)andEg=91eV forSiO2;thecalculationisaperiodicboundaryestimationusing thethicknessoftheamorphousSiO2 asalargeunitcell.The curvethusobtainedsharesimilarities withthatofvacuumfield emission.Toshowthiscurvewillderiveasimilarlinearityina FNplot,Eq.(2)isrewrittenas

oftheCNTinplanarconfigurationisonlyfifthofthatinfree

standingconfiguration.In other words,the onsetfieldfor vacuum fieldemission inourcasewasnotachieved, sotheobtainedI–V curvecouldnotbevacuumfieldemission,inaccordancewith ourpreviousexplanation.

Although wehaveprovedthecurrenttobeofleakagethrough theinsulatinglayer,theoriginofsuchalargeleakageisdiffi- culttoidentify.RepeatedexperimentswithorwithoutCNTdo notalwaysrevealsignificantleakagecurrentwithinthevoltage

ej

ln

=ln

e2a

2ma 2

(3)

sourcerange(200V):therearecaseswherearelativeflatcurve

(nocurrent)isobtainedandsometimesthephenomenonistrig-

F2 Fh

h2 ∗eF∗

geredbyabreakdownfirst.Theevidencessuggestthatleakage

ContrarytoFNlaw,theleadingpartoftherighthandsideof Eq.(3)(lne2a/Fh )isherealsoafunctionoflocalfield;one wouldexpecttoseeanon-linearrelation.Nonetheless,theplot ofEq.(3)(Fig.4(c)inset)doesstillrevealalinearrelation. Thereasonforthisisthatthevariationoflne2a/Fh issmall withinthefieldrangeofobservable Zenertunneling.Withinthis fieldrange,lne2a/Fhvaried 1∼07whereas thesecondterm

2ma 2/h2∗eF∗ varied 2∼133;theformerisonlyabout

5.2%ofthelatter.Sowhenweplotlnej/F2 against−1/F

asshownininsetofFigure4(c),alinearrelationship similaras FNplotwasobtained. Thisisthemainreasonformistaking the obtained linear“FNplot”forrealvacuumfieldemission tun- neling.Infact,itistheleakagecurrentthroughSiO2 insulating layerexplainedintheframework ofZenerTheory.Thisresult supportsourinitialassumptionsandspeculations.

Tocompleteouranalysis,theelectricfieldattheCNTtip iscalculatedusingComsolMultiphysics, acommercialprogram basedonfiniteelementmethod,isemployed.Foraquantita- tivecomparison,atraditionalconfigurationwasconsideredalong withtheconfiguration inthisstudy.Thedimensioninthetradi- tionalcasecloselyfollowsthosereportedbyBonardetal.11 on

maybeduetodefectsintheinsulatinglayer,localsiteswhere theSiO2 isthinner.Thedefectsmaybeoriginally presentfrom fabrication processorintroduced bymaterialbreakdown from localstaticchargeaccumulation. Itisalsoreasonabletoassume breakdown fromtheappliedfieldthroughafieldenhancement mechanismanalogoustothevacuumfieldemissionsituation.

Ourresultsandanalysissuggest,where theFNtheoryisappli- cable,the linearityof FN plot is onlya necessarycondition (atleastinplanaremission setups)forrealfieldemission; other testsmustbeperformed inordertoconfirmtheresults.Foruni- lateralassemblies,areproducible asymmetricI–Vcurve,from negativetopositivebiasshouldbesufficient.Meanwhile, for symmetricbilateralassemblies,leakagebetweenelectrodeandSi wafermustbere-examined afterobservingasupposedvacuum fieldemission.

4. CONCLUSIONS

Carefully designed CNTplanarsystemforfieldemission was fabricated. UtilizingSEMtoprovidethevacuumandprecise measurements,aplanarfieldemissioncurrentfromtheplanar

3401

RESEARCH ARTICLE Adv. Sci. Lett. 4,3398–3402,2011

CNTwasobserved.TheobtainedI–Vwassymmetric forfor- wardandreversebiasandtheFNplotcomplied withtheFN theory.Butourtiptoelectrodeexperimental setupshouldgive asymmetricI–Vcurveinsteadofasymmetricone.Finiteele- mentcalculations ofourplanardevicerevealedthefactthatthe onsetfieldstrengthforvacuumfieldemission wasnotachieved. Thusthecurrentcannotbeoriginated fromtheCNT.Meticulous analysis basedonZenertheoryrevealsthecurrenttobeorigi- natedfromleakagethroughtheinsulating SiO2 layerinsteadof realvacuumfieldemissionphenomenon. Thelargeleakagewas attributedtopossibledefectsintheSiO2 layer.

Oneoftheaimsinstudying planarfieldemission isits prospectsinintegratedcircuits.Ourworkisofgreatimportance instudyingfieldemissionfromplanarfieldemissiondevices sinceitiseasytomistakenly identifytheobtainedcurrenttobe originated fromvacuumfieldemissioninsteadofotherpossible casessuchasleakagefrominsulatinglayer.

Acknowledgments:This project is financially supported by the National Natural Science Foundation of China (NSFC 50902004 and 11023003), and National 973 projects (No.2007CB936202, 2009CB623703, MOST)fromChina’s MinistryofScienceandTechnology andtheResearchFundfor theDoctoralProgramofHigherEducation.

ReferencesandNotes

7. Q.Zhao, X.Y.Xu,X.F.Song, X.Z.Zhang, D.P. Yu,C.P. Li,and L.Guo,

Appl.Phys. Lett.88,3(2006).

8. X.T.Zhou, H.L.Lai,H.Y.Peng,F.C.K.Au,L.S. Liao,N.Wang, I.Bello, C.S.Lee, and S.T.Lee, Chem.Phys. Lett.318, 1(2000).

9. A.G. Rinzler, J.H. Hafner, P. Nikolaev, L.Lou, S. G. Kim,D. Tomanek, P.Nordlander,D.T.Colbert, and R.E.Smalley, Science269, 5230 (1995).

10. W.A.Deheer,A.Chatelain,and D.Ugarte, Science270, 5239 (1995).

11. J.M.Bonard, K.A.Dean, B.F.Coll,and C.Klinke,Phys. Rev. Lett. 89, 19

(2002).

12. J.M.Bonard, C. Klinke,K.A.Dean, and B.F. Coll,Phys. Rev. B 67, 11

(2003).

13. J.T.H.Tsaiand J.G.S.Li,Ieee Electron Device Letters 29,7(2008).

14. Z.L.Wang, R.P. Gao, W.A.de Heer, and P. Poncharal,Appl. Phys. Lett.

80,5(2002).

15. C.-D.Kim,H.-S.Jang,S.-Y.Lee, H.-R.Lee, Y.-S.Roh,I.-S.Rhee,E.-W.Lee, H.-S.Yang, and D.-H.Kim, Nanotechnology17,5180 (2006).

16. X.F.Song, J.Y.Gao, Q.Fu, J.Xu,Q.Zhao, and D.P. Yu,Nanotechnology

20,40(2009).

17. H.H.Busta, Institute ofPhysicsConferenceSeries99,29(1989).

18. A.S. Teh, S. B.Lee, K.B.K.Teo, M.Chhowalla,W.I.Milne,D.G.Hasko, H.Ahmed, and G.A. J.Amaratunga,Microelectronic Engineering67–68, 789 (2003).

19. K.Subramanian, Y. Wong, W. P. Kang, J.L. Davidson, B. K.Choi, and

M.Howell,Diamond Relat. Mater.16,12(2007).

20. Y.M.Wong,W.P.Kang,J.L.Davidson,B.K.Choi,and J.H.Huang, J.Vac.

Sci. Technol.,B25,2(2007).

21. A.H.Monica, M.Paranjape,G.L.Coles, S.J.Papadakis,and R.Osiander,

J.Vac. Sci. Technol.,B26,2(2008).

22. S. W. Lee, S. S. Lee, and E.-H. Yang, NanoscaleResearch Lett. 4, 10

(2009).

23. Y.G.Yao,Q.W.Li, J.Zhang, R.Liu,L.Y.Jiao, Y.T.Zhu,and Z.F.Liu,Nat.

Mater.6,4(2007).

24. E.Minoux,O.Groening,K.B.K.Teo, S.H.Dalal,L.Gangloff, J.P.Schnell, L.Hudanski,I.Y.Y.Bu,P.Vincent, P.Legagneux,G.A.J.Amaratunga,and

1. / J.M.Bonard, J.P. Salvetat,T. Stockli, L.Forro, and A.Chatelain, Appl. Phys. A69,3(1999). / 25. / W.I.Milne, Nano Lett.5,11(2005).
X.Bai,M.S.Wang, G.M.Zhang, J.Yu,Z.X.Zhang, D.Z.Guo, X.Y.Zhao,
2.
3. / J.Wu,Y.F.Ma,D.M.Tang, C.Liu,Q.W.Huang, Y.Huang, H.M.Cheng,
D.P.Chen, and Y.S.Chen, J.Nanosci.Nanotechnol.9,5(2009). J.D.Carey, J.Nanosci.Nanotechnol.9,11(2009). / 26. / and Z.Q.Xue,J.Vac. Sci. Technol.B25,2(2007).
K.F.Hii,R.R.Vallance, S. B.Chikkamaranahalli,M.P. Menguc, and A.M. Rao, J.Vac. Sci. Technol.B24,3(2006).
4. / F.H.Wang, T.C.Lin,andS.D.Tzeng, J.Nanosci. Nanotechnol. 10,7(2010). / 27. / H.M. Wang, Z.Zheng, Y. Y. Wang, J.J.Qiu,Z.B.Guo,Z.X. Shen,andT.Yu,
5. / Z.L.Tsakadze,K.Ostrikov, C. H.Sow, S. G. Mhaisalkar,and Y.C. Boey,
J.Nanosci.Nanotechnol.10,10(2010). / 28. / Appl.Phys. Lett.96,2(2010).
R.H.Fowlerand L.Nordheim, Proc.R.Soc. London, Ser. A119,781(1928).
6. / Q.Zhao, S. Q.Feng, Y.W.Zhu, X.Y.Xu,X.Z.Zhang, X.F.Song, J.Xu, / 29. / J.W.Gadzukand E.W.Plummer,Rev. Mod.Phys. 45,3(1973).
L.Chen, and D.P.Yu,Nanotechnology17,11(2006). / 30. / C.Zener, Proc.R.Soc. London, Ser. A145, 523(1934).

3402