12–STD– BUSINESSMATHEMATICS FORMULAE
CHAPTER 1 . APPLICATIONS OFMATRICES AND DETERMINANTS
1. AdjointofamatrixAis
AdjAAT.
(whereAc isa cofactor matrix)
2. InverseofamatrixAis
3. Results:
A1
1AdjA.
A
(i)
AAdjA(AdjA)A
AI.
(ii)
Adj(AB)(AdjB)AdjA.
(iii)AB1 B1 A1.
(iv)
AA1 A1AI.
(v) A11 A.
4. Therankofa zeromatrix(irrespectiveofits order)is0.
5. Conditionsfor consistencyofSimultaneousLinearEquations(Non–homogeneous):
(i)If
(ii)If
(iii) If
(A,B)(A)n,thenthe equationsare consistentandhasunique solution.
(A,B)(A)n,thenthe equationsare consistentandhasinfinitelymanysolutions.
(A,B)(A),thenthe equationsare inconsistentandhasno solution.
6. Conditionsfor consistencyofSimultaneousLinearEquations(Homogeneous):
(i)If
(A,B)(A)n,(OR) If
A0thenthe equationshavetrivial solutionsonly.
(ii)If
(A,B)(A)n,(OR) If
A0
thenthe equationshavenontrivial solutions also.
7. Cramer’srule:
xx ;
yy ;
zz .
aa
11
12
8. Technologymatrix
Bx1
x2 .
a21
a22
x1
x2
9. Outputmatrix
XIB1D.
PP
10.TransitionProbability MatrixTPAA
PAB
(OR)
T PP
PQ
PBA
PBB
PQP
PQQ
(dependsonthenameofthe productsA, BorP, Q)
11.ForfindingEquilibriumshareof market A+B=1(OR) P+Q=1
(Thisstepcarries1markandit iscompulsory)
CHAPTER 2 . ANALYTICALGEOMETRY
1.SP e.
PM
2.Eccentricityofparabola e =1.
3.Eccentricityofellipse e1.
4.Eccentricityofhyperbolae >1.
5.Eccentricityofrectangularhyperbolae
2..
6.Parabola:
y2 =4ax (opens rightward) / y2 =-4ax (opens leftward) / x2 =4ay (opens upward) / x2 =- 4ay (opens downward)Vertex / (0,0) / (0,0) / (0,0) / (0,0)
Focus / a,0 / a,0 / 0,a / 0,a
Directrix / xa / xa / y a / y a
Latusrectum / 4a / 4a / 4a / 4a
Axis / y0 / y0 / x0 / x0
7.Ellipse:
22x y 1,ab
a2b2 / x2y2
1,ab
b2a2
Centre / (0,0) / (0,0)
Eccentricity / b2 a21e2
(OR)
b2
e 1
a2 / b2 a21e2
(OR)
b2
e 1
a2
Vertices / a,0,a,0 / 0,a,0,a
Directrix / a x
e / ya e
Latusrectum / 2
2b
a / 2b2
a
Foci / ae,0,ae,0 / 0,ae,0,ae
8.Hyperbola:
x2y21
a2b2 / y2x2
1
a2b2
Centre / (0,0) / (0,0)
Eccentricity / b2 a2e2 1
(OR)
b2
e 1
a2 / b2 a2e2 1
(OR)
b2
e 1
a2
Vertices / a,0,a,0 / 0,a,0,a
Directrix / xa e / ya e
Latusrectum / 2
2b
a / 2b2
a
Foci / ae,0,ae,0 / 0,ae,0,ae
9. Thegeneralequationof RectangularHyperbola (R.H)isxy= c2.
a2
wherec
(usefulfor objectives)
2
10.TheeccentricityofRectangularHyperbola(R.H) ise2
CHAPTER3 . APPLICATIONS OFDIFFERENTIATION–I
1. Averagecost(AC)=
C(or)f(x)k.
x
2. Averagevariablecost(AVC)=
x
f(x).
x
3. Averagefixedcost(AFC)=k.
x
4. Marginalcost(MC)=
dC.
dx
5. Marginalaveragecost(MAC)=
6. Total revenueR=px.
dAC
.
dx
7. Averagerevenue(AR)= R.
x
(Averagerevenue= Demandfunctioni.e,AR=p)
8. Marginalaveragerevenue (MR)=
dR.
dx
9. Ifx =f(p) isa demandfunction,thenElasticityofdemand
p.dx .
(Wherex –quantitydemanded;p–price)
Note: Fora demandfunction q=f(p),
p.dq
dxdp
dqdp
10.Ifx =f(p) isasupply function,thenElasticityofsupply
p.dx
(Wherex –quantitysupplied; p–price)
11.RelationbetweenMRandElasticityofdemandis
sx dp
1
MRp1.
12.Atequilibriumlevel,Qd =Qs.
13.Equationoftangentisyy1mxx1.
14.Equationofnormalisyy1xx.
d
1m1
CHAPTER4 . APPLICATIONS OFDIFFERENTIATION–II
1.Euler’stheorem:If uisa homogeneousfunctionofxandy withdegreenthen,
xuyunu.
(forzcanbeusedinthe placeofudependsonthenameofthefunction)
xy
2.PartialElasticities
Eq1
p1 .q1
and
Eq1
p2 .q1
Ep1
q1p1
Ep2
q1p2
3.Economicorderquantity(q)
2RC3 .
0
1
(whereR–Requirement; C3 –orderingcost ; C1 –carryingcost)
4.Ifunitprice andpercentageofinventoryare giventhencarryingcostC1
%
100
unitprice.
5.Time betweentwoconsecutiveorders(t
)q0 .
0R
6.Numberoforders= R.
q0
7.Minimumaveragevariablecost=
R
2RC3C1.
8.Total orderingcost=
C3.
q0
9.Total carryingcost=
q0 C.
21
CHAPTER5 . APPLICATIONS OF INTEGRAL CALCULUS
PropertiesofDefiniteintegrals:
ba
1.f(x)dx f(x)dx..
ab
a
2. Iff(x)isanodd function,i.e, if f(-x)=-f(x)thenf(x)dx0..
a
aa
3. Iff(x)isanevenfunction,i.e, if f(-x)=f(x)thenf(x)dx 2f(x)dx..
a0
bb
4.f(x)dxf(abx)dx..
aa
aa
5.f(x)dx f(ax)dx.
00
6. Theareaunderthe curve
yf(x),thex-axisandthe ordinatesat
xa
and
xbis
b
Areaydx
a
7. Theareaunderthe curvex =g(y),they-axisandthe linesy=candy = dis
d
Areaxdy.
c
8. IfMCisthemarginalcost functionthentotalcost functionisgivenbyCMCdxk.
9. IfMRisthemarginalrevenuefunctionthentotal revenuefunctionis givenby
RMRdxk.
10.Theproducers’surplus for the supply function
pg(x)for the quantityx0
andprice
p0 is
x0
P.Sp0x0 g(x)dx.
0
11.Theconsumers’ surplus for the demandfunction p=f(x)for the quantityx0 andpricep0 is
x0
C.Sf(x)dxp0x0.
0
CHAPTER6 . DIFFERENTIAL EQUATIONS
1. TheGeneral formofHomogeneous differential equationsis
dy
dx
fx, y
gx, y.
2. Working ruleforfinding the solution oflinear differentialequations
(i)ExtractPandQ.
(ii)FindP
dx.
(iii)FindIntegratingFactor(I.F) =ePdx
3. Thesolutiontolinear differentialequationsoftype
dyPyQ
dx
(WherePandQarefunctionsof
xonly)is
yI.FQI.FdxC
(OR)
yePdx QePdxdxC
4. Thesolutiontolinear differentialequationsoftype
dxPxQ
dy
(WherePandQarefunctionsof
yonly)is
xI.FQI.FdyC
(OR)
xePdy QePdydyC.
5. Secondorderlinear differentialEquations
Ifm1 andm2 arethe rootsoftheAuxilliaryequationisofthe typeax2 +bx+c=0
(Quadraticequation)
(i)Ifthe rootsm1 andm2 arereal anddistinct,C.F=
Aem1x Bem2x.
(ii) Ifthe rootsm1 andm2 arereal andequal(m1 =m2),C.F=AxBemx.
(iii)Ifthe rootsm1 andm2 areunreal,i.e, ifmi, C.F=exAcosxBsinx.
(C.F– ComplementaryFunction)
CHAPTER7 . INTERPOLATION
1. Forwardoperator(delta)(y0) y1 y0
(or)(f(x))
f(xh)f(x).
2. Backwardoperator(nabla)(y1)y1 y0
(or)(f(xh))
f(xh)f(x).
3. TheShiftingoperator
E(y0)y1,
E (y0)y2,
E (y0)y3...... andsoon.
4. Therelation betweenforwardoperator(delta)andshiftingoperatorEis
E1
(or)
E1.
5. (Formissing termproblems)
(a)E13y
E3 3E2 3E1y .
(b)E14 y
(c)E15 y
E4 4E3 6E2 4E1y .
E5 5E4 10E3 10E2 5E1y .
00
6. Gregory–Newton’sforwardformula:
yy0
u y
1!0
uu1 2
y0
2!
uu1u2
3!
3y
......
uu1u2...... un1
n!
ny.
Whereu xx0 .
h
andh–equalinterval betweenthex- values
(numberoftermsintheformuladepends onthenumberoftermsintheproblem)
7. Gregory–Newton’sbackwardformula:
y yn
u
yn
1!
uu12
2!
yn
uu1u23
3!
yn......
uu1u2...... un1n
n!
yn.
Whereu xxn .
h
andh–equalinterval betweenthex- values
(numberoftermsintheformuladepends onthenumberoftermsintheproblem)
8. Lagrange’s formula:
yy0
xx1xx2...... xxn
x0 x1x0 x2...... x0 xn
y1
xx0xx2...... xxn
x1 x0x1 x2...... x1 x
n
......
yn
xx0xx1...... xxn1
xn x0xn x1...... xn xn1
(dependsonthenumberof terms giveninthe problem)
9. LineOf Best Fit:
Normalequationsare
axnby
2
ax
bxxy
Theline ofbestfitis y=ax+b
CHAPTER8 . PROBABILITY DISTRIBUTION
1. IfX isa continuousrandomvariable,then
2. Fora discreterandomvariable X,
b
P(aXb)f(x)dx.
a
Mean
E(X)xi pi.
E(X2)x2p.
ii
Var(X)E(X2)E(X)2.
3. Fora continuousrandomvariableX,
Mean
E(X)
xf(x)dx.
E(X2)
x2 f(x)dx.
Var(X)E(X2)E(X)2.
4. Ifthe discreterandomvariableXfollowsBinomialdistributionthen
P(X
x)nCx
pxqnx,
x0,1,2,...... n.
5. Resultsrelatedto Binomialdistribution:
Mean= np; Variance= npq ;and p+q= 1
6. Ifthe discreterandomvariableXfollowsPoissondistributionthen
P(Xx)
x
,
x0,1,2,......
x!
7. ResultsrelatedtoPoissondistribution:
Meannp
; Variance=.
InPoissondistributionMean= Variance
8. Ifthe continuousrandomXfollowsNormaldistribution,thenitsp.d.fisgivenby
1x2
fx
1
e2 ,
x.
2
9. ToconvertNormal variate XtostandardNormalvariatezweuse,
zX.
CHAPTER9 . SAMPLING DISTRIBUTION
1. Notations:
(a)N–Populationsize
(b) n–Sample size
(c) X
Meanofthesample
(d)
Meanofthepopulation
(e)s- Standarddeviation(S.D) ofsample
(f) -Standarddeviation(S.D)ofpopulation
2. Confidencelimitsfor=
XZc
s .(IfNisnotgiven)
n
=XZc
n
Nn.(IfNisgiven)
N1
3. Confidenceintervals for proportion=
pZc
pq.(IfNisnotgiven)
n
=pZc
n
Nn.(IfNisgiven)
N1
Note: For95%confidenceintervalZc =1.96
For99%confidenceintervalZc =2.58
4. TestingofHypothesisFormulae:
Test statistic
Test statistic
ZX.
n
Z pP.
pq
n
5. For5%level ofsignificance: Acceptanceregion
Z1.96.
Criticalregion
Z1.96.
6. For1%level ofsignificance: Acceptanceregion
Z2.58.
Criticalregion
Z2.58.
CHAPTER10 .APPLIED STATISTICS
1.Correlationcoefficientformulae:
(a)
r(X,Y)
NXYXY
NX2 X2
NY2 Y2
(If
X,Yareintegersornon-integers)
(b)r(x,y)xy
Where
xXX
and
yYY.
x2
y2
(If
X,Yareintegers)and
XXandYY
(c)
r(X,Y)
nn
Ndxdydxdy
Ndx2 dx2
Ndy2 dy2
(If
X,Yareintegersornon-integers)
Where
dxXAand
dyYB.
(A,Bare arbitraryvaluesofXandY)
(Note:Correlationcoefficient shouldlie between -1and1)
2.RegressionFormulae:
(a)Regressionline ofXon Yis
(XX)bxy(YY).
(b)Regressionline ofYonXis
(YY)byx(XX).
Where
XX
n
andYY
n
Wherebxy
NXYXY
Y2 Y2
andbyx
NXYXY
X2 X2
(If
X,Yareintegersornon- integers)
Wherebxy
xy
y2
andbyx
xy
x2
(If
X,Yareintegers)
(Note: RegressionlineswillintersectatX,Y.)
3.SeasonalIndex=
Quaterly
Grand
average100.
average
4.IndexNumbers:
(a)Laspeyre’spriceIndexnumberP Lp1q0 100.
p0q0
(b)Paasche’spriceindexnumberP Pp1q1 100.
p0q1
(c)Fisher’spriceindexnumberP F
p1q0 p1q1 100.
p0q0
p0q1
(OR)P
F
LP
0101
(d)Costof Living Indexnumbers:
(i)AggregateExpendituremethod(C.L.I) p1q0 100.
p0 q0
(ii)FamilyBudgetmethod (C.L.I)PV.
V
WhereP
p1 100
andVpq.
0 0
0
5.Statistical Quality Control(SQC)Formulae:
Rangechart(RChart):C.L=
RR.
U.C.L=
L.C.L=
n
D4 R
D3R
XChart:C.L=
XX.
U.C.L=
L.C.L=
n
XA2R.
XA2R.
(WhereC.L–Central Line ; U.C.L- UpperControlLine ; L.C.L- LowerControlLine)