CalGeo: Teaching Calculus using dynamic geometric tools

Outcome 1.4.2 “Bibliography about student understanding of topics in Calculus’’.

BIBLIOGRAPHY

Adams, R. (2003). Calculus: A complete course. (5th ed.). Addison-Wesley.

Agwu, N. M. A. (1995). Using a computer laboratory setting (CLS) to teach college calculus. (Syracuse University, 1995). Dissertation Abstracts International, 57/02, 611.

Alcock, L.J. (2001). Categories, definitions and mathematics: Student reasoning about objects in analysis. Unpublished Ph.D. Thesis, Mathematics Education Research Centre, University of Warwick, UK.

Alcock, L.J. and Simpson, A.P. (2002). Definitions: Dealing with categories mathematically. For the Learning of Mathematics, 22(2), 28–34.

Alcock, L.J. and Simpson, A.P. (In press). Convergence of sequences and series: Interactions between visual reasoning and the learners beliefs about their own role. Educational Studies in Mathematics.

Alcock, L.J., & Simpson, A.P. (2001). The Warwick analysis project: Practice and theory. In D. Holton (Ed.), The teaching and learning of mathematics at university level (pp. 99–111). Dordrecht: Kluwer.

Aldis, G. K., Sidhu, H. S., & Joiner, K. F. (1999). Trial of calculus and maple with heterogeneous student groups at the Australian defense force academy. The International Journal of Computer Algebra in Mathematics Education, 6(3), 167-189.

Almeqdadi, F., (1997). Graphics calculators in calculus: An analysis of students’ and teachers’ attitudes. (Ohio University, 1997). Dissertation Abstracts International , 58/05, 1627.

Alves Dias, M., & Artigue, M. (1995). Articulation problems between different systems of symbolic representations in linear algebra. In L. Meira (Ed.), Proceedings of the 19th international conference on the psychology of mathematics education (Vol. I, pp. 34–41). Recife, Brazil.

Andersen, K. (1985). Cavalieri's method of indivisibles, Archive for History of the Exact Sciences, 31, 291–367.

Anderson, J., Austin, K., Barnard, T., & Jagger, J. (1998). Do third-year mathematics undergraduates know what they are supposed to know. International Journal of Mathematical Education in Science and Technology, 29(3), 401-420.

Arcavi A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics 52(3), 215–241.

Armstrong, G. M. & Hendrix, L. J., (1999). Does traditional or reformed calculus prepart students better for subsequent courses? A preliminary study. Journal of Computers in Mathematics and Science teaching, 18(2), 95–103.

Artigue, M. (1986). The notion of differential for undergraduate students in the sciences. P.M.E. 10,London, 235-240.

Artigue, M. (1991). Analysis. In D.O. Tall (Ed.), Advanced Mathematical Thinking (pp. 166–198). Dordrecht: Kluwer.

Artigue, M. (2000). Teaching and learning calculus: What can be learned from education research and curricular changes in France? In E. Dubinsky, A. H. Schoenfeld & J. Kaput (Eds.). Research in collegiate mathematics education IV, American Mathematical Society (pp. 1–15). Providence, Rhode Island.

Artigue, M. (2003).Learning and teaching analysis: What can we learn from the past in order to think about the future? In D. Coray, F. Furinghetti, H. Gispert, B.R. Hodgson & G. Schubring (Eds.). One Hundred Years of L’Enseignement Mathématique. Moments of Mathematics Education in the Twentieth Century. L’Enseignement Mathématique, Genève, 213–223.

Artigue, M., Chartier, G., & Dorier, J.L. (2000). Presentation of other research works. In J.L. Dorier (Ed.), On the Teaching of Linear Algebra (pp. 247–271). Dordrecht: Kluwer Academic Publishers.

Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D., & Thomas, K. (1996). A framework for research and curriculum development in undergraduate mathematics education. In: E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.), Research in collegiate mathematics education (Vol. 2, pp. 1–32). Providence, RI: American Mathematical Society.

Asiala, M., Cottrill, J., Dubinsky, E., & Schwingendorf, K. (1997). The development of students’ graphical understanding of the derivative. Journal of Mathematical Behavior, 16(3), (pages?).

Ayers, T., Davis G., Dubinsky E. & Lewin P. (1988). Computer experiences in learning composition of functions. Journal for Research in Mathematical Education, 19(3), 248-59.

Baker, B., Hemenway, C., & Trigueros, M. (2000). On transformations of basic functions. In: H. Chick, K. Stacey, & J. Vincent (Eds.), Proceedings of the 12th ICMI Study Conference on the Future of the Teaching and Learning of Algebra (Vol. 1, pp. 41–47). University of Melbourne.

Barnes, M. (1988). Understanding the Function Concept: Some Results of Interviews with Secondary and Tertiary Students. Research on Mathematics Education in Australia, 24-33.

Baron, M.E. (1987). The Origins of the Infinitesimal Calculus.New York: Dover.

Barton, S. D. (1996). Graphing calculators in college calculus: An examination of teachers’ conceptions and instructional practice. (Oregon State University, 1995). Dissertation Abstracts International, 56/10, 3868.

Bell, J.L. (1988).Infinitesimals. Synthese, 75, 285–315.

Berry, J., & Nyman, M. (2003). Promoting students’ graphical understanding of the calculus. Journal of Mathematical Behaviour, 22. 481-497

Biehler, R. (in press) Reconstruction of meaning as a didactical task: The concept of function as an example. In J. Kilpatrick, C. Hoyles & O. Skovsmose (Eds.), Meaning in Mathematics Education.Dordrecht: Kluwer.

Bishop, E. (1967). Foundations of constructive analysis. McGraw-Hill.

Bishop, E. (1977). Review of elementary calculus. In H.J. Keisler (Ed.), Bulletin of the American Mathematical Society 83(2), (pp. 205–208).

Bloch, I. (1999). L’articulation du travail mathématique du professeur et de l’élève dans l’enseignement de l’analyse en première scientifique. Recherches en Didactique des Mathématiques, 19(2), 135–194.

Boero, P. , Dreyfus, T., Gravemeijer K., Gray, E., Hershkowitz, R., & Schwarz, B. (2002). Abstraction: theories about the emergence of knowledge structures. In: A.D. Cockburn & E. Nardi, (Eds.), Proceedings of the 26th international conference for the psychology of mathematics education (Vol. 1, pp. 113–138). UEA, Norwich, UK.

Bolzano, B. (1950). Paradoxes of the infinite (translated from the German of the posthumous edition by Fr. Prihonsky and furnished with a historical introduction by Donald A. Steele).London: Routledge & Paul.

Bookman, J., & Charles F. (1999). The evaluation of project CALC at DukeUniversity 1989- 1994. In B. Gold, S. Keith, & W. Marion (Eds.), Assessment practices in undergraduate mathematics, MAA Notes, 49, (pp.253-256). WashingtonDC: Mathematical Association of America.

Borasi, R. (1985). Errors in the enumeration of infinite sets. Focus on Learning Problems in Mathematics, 7, 77–89.

Borasi, R. (1985). Intuition and rigor in the evaluation of infinite expressions. Focus on LearningProblems in Mathematics, 7(3-4), 65-75.

Borba, M. C. (1993). Students' understanding of transformations of functions using multirepresentational software. Doctoral Dissertation, Cornell University, U.S.A.. Published in 1994-Lisbon, Portugal: Associação de Professores de Matemática.

Borba, M. C. (1995a) Overcoming Limits of software tools: A student's solution for a problem involving transformation of functions. In L.Meira et al. (Eds.), Proceedings of the XVIII Psychology of Mathematics Education (Vol. II, pp. 248–255). Recife, Brazil: UFPE.

Borba, M. C., & Confrey, J. (1992). Transformations of functions using multirepresentational software. Proceedings of the XVI Psychology of Mathematics Education (Vol. III, pp. 149) Durham: University of New Hampshire.

Borba, M.C., & Confrey, J. (1996). A students’ construction of transformations of functions in a multirepresentational environment. Educational Studies in Mathematics,31(3), 319–337.

Borgen, K.L., &Manu, S.S.(2002). What do students really understand?Journal of Mathematical Behavior, 21(2), 151-165.

Bos, H.J.M. (1974). Differentials, higher-order differentials and the derivative in the Leibnizian calculus. Archive for History of the Exact Sciences, 14, 1–90.

Bottazzini, U. (1986). The higher calculus: A history of real and complex analysis from Euler to Weierstrass.New York: Springer-Verlag.

Bowden, J., & Ference M. (1998). University of learning: Beyond quality and competence in higher education. London: Kogan Page; Sterling, VA: Stylus Publishing.

Boyer, C. B. (1985). A History of Mathematics.Princeton, NJ: PrincetonUniversity Press.

Boyer, C.B. (1941). Cavalieri, limits and discarded infinitesimals. Scripta Mathematica, 8, 79–91.

Boyer, C.B. (1959). The History of the Calculus and its Conceptual Development. New York: Dover.

Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992).Development of the process conception of function. Educational Studies in Mathematics, 23, 247–285.

Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (in preparation). Development of the Process Concept of Function.

Bremigan, E.G.(2005).An Analysis of Diagram Modification and Construction in Students' Solutions to Applied Calculus Problems, JRME, 36(3), 248-277.

Bressoud, D. (1994). A Radical Approach to Real Analysis.Washington, DC: Mathematical Association of America.

Briggs, A. W. (1998). Defining uniform continuity first does not help. Letters to the editor, Notices of the AMS, 45 5, 462.

Burn, R.P. (1992). Numbers and functions: Steps into Analysis. Cambridge: CambridgeUniversity Press.

Burn, R.P. (2003). Some comments on The Role of Proof in Comprehending and Teaching Elementary Linear Algebra by F. Uhlig. Educational Studies in Mathematics, 51, 183–184.

Cajori, F. (1923). Grafting of the theory of limits on the calculus of Leibniz. American Mathematical Monthly, 30, 223–234.

Cajori, F. (1925). Indivisibles and ghosts of departed quantities in the history of mathematics. Scientia, 37, 301–306.

Carlson, M., Jacobs, S., Coe, T., Larsen, S.,& Hsu, E. (2002) Applying Covariational Reasoning While Modeling Dynamic Events: A Framework and a Study. Journal for Research in Mathematics Education,33(5), 352-378.

Carraher, D., Schliemann, A., & Nevirovsky, R., (1995). Graphing from everyday experience. Hands on. 10(2) ( Terc, Mass.

Castillo, T. (1998). Visualization, attitude and performance in multivariable calculus: relationship between use and nonuse of graphing calculator (college students). (The University of Texas at Austin, 1997). Dissertation Abstracts International, 59/02, 438.

Chevallard, Y. (2002a). ‘Organiser L’étude 1. Structures et fonctions’, in J.-L. Dorier et al. (eds.), Actes de la 11 e école d’été de didactique des mathématiques – Corps 21–30 Août 2001, La Pensée Sauvage, Grenoble, pp. 3–22.

Christou, C., Zachariades, Th., & Papageorgiou, E. (2002). The difficulties and reasoning of undergraduate mathematics students in the identification of functions. Proceedings in the 10th ICME Conference. Crete: Wiley.

Christou, C., Pitta-Pantazi, D., Souyoul, A., & Zachariades, T. (2005). The embodied, proceptual and formal worlds in the context of functions. Canadian Journal of Science, Mathematics and Technology Education, 5(2), 241-252.

Cipra, B.A. (1988). Calculus: Crisis Looms in Mathematics’ Future. Science, 239, 1491-1492.

Confrey, J. (1991a). Function Probe [computer program]. Santa Barbara: Intellimation Library for the Macintosh.

Confrey, J. (1992). Function Probe. [MacIntosh sofware] Santa Barbara, CA: Intellimation Library for the MacIntosh.

Confrey, J. (1992). Using computers to promote students' inventions of the function concept. In S.Malcom, L.Roberts, & K.Sheingold (Eds.), This Year In School Science 1991 (pp. 141–174).Washington D.C: American Association for the Advancement of Science.

Confrey, J. (1993a). The role of technology in reconceptualizing functions and algebra. In J. R.Becker & B. J.Pence (Eds.), Proceedings of the XV Psychology of Mathematics Education-NA (Vol. I, pp. 47–74). San Jose, U.S.A.: Center for Mathematics and Computer Science Education at San JoseStateUniversity.

Confrey, J. (1993b). Diversity, tools, and new approaches to teaching functions. Paper presented at the China-Japan-U.S. Meeting on Mathematics Education, Shanghai: East-ChinaNormalUniversity.

Confrey, J. (1994a). Six approaches to transformation of functions using multirepresentational software. Proceedings of the XVIII Psychology of Mathematics Education (Vol. I, pp. 47–74), Lisbon: LisbonUniversity.

Confrey, J., Rizutti, J., Scher, D., & Piliero, S. (1991). Documentation of Function Probe, unpublished manuscript. Ithaca, NY: CornellUniversity.

Connors, M. A. (1995). Achievement and gender in computer-integrated calculus. Journal of Women and Minorities in Science and Engineering, 2, 113-121.

Cooley, L. A. (1996). Evaluating the effects on conceptual understanding and achievement of enhancing an introductory calculus course with a computer algebra system (New York University, 1995). Dissertation Abstracts International, 56/10, 3869.

Cooley, L. A. (1997). Evaluating student understanding in a calculus course enhanced by a computer algebra system. Primus, 7(4), 308-316.

Cooney, T.J., & Wilson, M.R. (1993). Teachers' thinking about function: Historical and research perspectives. In T.A. Romberg, E. Fennema & T. Carpenter (Eds.), Integrating Research about the Graphical Representations of Function (pp. 131–158). Hillsdale, NJ: Erlbaum.

Cornu, B. (1981). Apprentissage de la notion de limite: modèles spontanés et modèles propres. Actes du Cinquième Colloque du Groupe Internationale PME, Grenoble, 322-326.

Cornu, B. (1983). Apprentissage de la notion de limite: Conceptions et obstacles. Doctoral Dissertation, Université Scientifique et Médicale, Grenoble.

Cornu, B. (1983). Apprentissage de la notion de limite: Conceptions et Obstacles. Thèse de Doctorat, Grenoble.

Cornu, B. (1983). L'apprentissage de la Notion de Limites: Conceptions et Obstacles. Unpublished PhD thesis, L'Universite Scientifique et Medicale de Grenoble.

Cornu, B. (1991). Limits. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 153–166). Dordrecht: Kluwer Academic Publishers.

Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., & Vidakovic, D. (1996). Understanding the Limit Concept: Beginning with a Coordinated Process Scheme. Journal of Mathematical Behavior,15(2), 167-192.

Courant, R., & John, F. (1965). Introduction to Calculus and Analysis 1. Wiley International.

Cowell, R. H., & Prosser, R.T. (1991). Computers with calculus at Dartmouth. Primus, 1(2), 149-158.

Crocker, D. A. (1993). Development of the concept of derivative in a calculus class using the computer algebra system Mathematica. In L. Lum (Ed.), Proceedings of the Fourth Annual International Conference on Technology in Collegiate Mathematics (pp. 251-255). Reading, MA: Addison Wesley.

Dauben, J.W. (1988). Abraham Robinson and nonstandard analysis: history, philosophy, and foundations of mathematics. In W. Aspray & P. Kitcher (Eds.), History and Philosophy of Modern Mathematics (pp. 177–200). Minneapolis: University of Minnesota Press.

Davis, B., Porta, H., & Uhl, J. (1994). Calculus & Mathematica®: Addressing fundamental questions about technology. In L. Lum (Ed.) Proceedings of the Fifth Annual International Conference on Technology in Collegiate Mathematics (pp. 305-314). ReadingMA: Addison Wesley.

Davis, M., & Hersh, R. (1972). Nonstandard analysis. Scientific American, 226, 78–86.

Davis, R. B., & Vinner, S. (1986). The notion of limit: Some seemingly unavoidable misconception stages. Journal of Mathematical Behavior,5(3), 281-303.

Davis, R.B., & Vinner, S. (1986). The Notion of Limit: Some Seemingly Unavoidable Misconception Stages. Journal of Mathematical Behaviour, 5(3), 281-303.

de La Vallée Poussin, 1954 C. de La Vallée Poussin, d’Analyse Infinitésimale (8th ed.), Gauthiers-Villars, Paris.

Demana & Waits 1988. Pitfalls in graphical computation, or why a single graph isn’t enough. College Mathematics Journal,19 (2) 177-183.

Dennis, D., & Confrey, J. (1995). Functions of a curve: Leibniz's original notion of functions and its meaning for the parabola. The College Mathematics Journal, 26(3).

Dorier, J.-L. (2000). On the Teaching of Linear Algebra. Dordrecht: Kluwer Academic Publishers.

Dorier, J.-L. (2002). Teaching linear algebra at university. In Li Tatsien (Ed.), Proc. Int. Congr. Mathematician, Beijing 2002, August 20-28, Vol III (Invited Lectures), pp. 875–884.

Dorier, J.-L., & Sierpinska, A. (2001). Research into the teaching and learning of linear algebra. In D. Holton et al. (Eds.), The Teaching and Learning at University Level - An ICMI Study (pp. 253–271).Dordrecht: Kluwer Academic Publishers.

Dorier, J.-L., Robert, A., Robinet, J. and Rogalski, M. (1994). The teaching of linear algebra in first year of French science university, in Proc. 18th Conf. Int. Group for the Psychology of Mathematics Education, Lisbon, 4(4), pp. 137–144.

Dorier, J.-L., Robert, A., Robinet, J. and Rogalski, M. (2000). On a research program about the teaching and learning of linear algebra in first year of French science university. International Journal of Mathematical Education in Sciences and Technology, 31(1), 27–35.

Dorofeev, G. V. (1978). The concept of function in mathematics and in school. Mathematics in School, 2, 10 -27.

Douglas, R. G. (Ed.) Towards a lean and lively calculus, MAA Notes 6. Washington, DC: MAA.

Dreyfus, T. & Vinner, S. (1989). Images and Definitions for the Concept of Function. Journal forResearch in Mathematics Education, 20(4), 356-366.

Dreyfus, T., & Eisenberg, T. (1982). Intuitive functional concepts: a Baseline Study on Intuitions. Journal for Research in Mathematical Education, 6(2), 18-24.

Dreyfus, T., & Eisenberg, T. (1983). The Function Concept in College Students: Linearity, Smoothness, and Periodicity. Unpublished manuscript.

Dreyfus, T., & Eisenberg, T. (1996). On different facets of mathematical thinking. In: R. Sternberg & T. Ben-Zeev (Eds.), The nature of mathematical thinking (pp. 253–284). Mahwah, NJ: Lawrence Erlbaum Associates.

Dreyfus, T., & Halevi, T. (1990/91). QuadFun-A case Study of Pupil Computer Interaction, Journal of Computers in Math and Science Teaching, 10 (2) 43-48.

Dreyfus, T., & Tsamir, P. (2002). Ben’s consolidation of knowledge structures about infinite sets. Tel Aviv University, Israel: Technical Report, available from the authors.

Dreyfus, T., & Tsamir, P. (2004). Ben’s consolidation of knowledge structures about infinite sets. The Journal of Mathematical Behavior, 23(3), 271-300.

Dreyfus, T., Hershkowitz, R., & Schwarz, B. B. (2001). Abstraction in context II: the case of peer interaction. Cognitive Science Quarterly, 1(3/4), 307–368.

Dreyfus,T., & Vinner, S. (1982). Some aspects of the function concept in college students and junior high school teachers. Proceedings of the Sixth International Conference for the Psychology of Mathematics Education, Antwerp, 12-17.

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 95–126). Dordrecht: Kluwer Academic Publishers.

Dubinsky, E. (1992). A learning theory approach to calculus. In Z.A. Karian (Ed.), Symbolic Computation in Undergraduate Mathematics Theory. MAA Notes, 24 (pp. 43–55).Washington.

Dubinsky, E., & MacDonald, M. (2001). APOS: a constructivist theory of learning in undergraduate mathematics education research. In: D. Holton (Ed.), The Teaching and Learning of Mathematics at University Level: An ICMI Study (pp. 273–280). Dordrecht: Kluwer Academic Publishers.

Dubinsky, E., & Yiparaki, O. (2000). On student understanding of AE and EA quantification. In E. Dubinsky, A. H. Schoenfeld & J. Kaput (Eds.), Research in Collegiate Mathematics Education IV (pp. 239–289).American Mathematical Society, Providence, Rhode Island,

Dubinsky, E., Weller, K., Mcdonald, M.A., & Brown, A. (2005). Some historical issues and paradoxes regarding the concept of infinity: An Apos analysis: Part 2. Educational Studies in Mathematics, 60(2), 253-266.

Dudley, U. (1993). Readings for Calculus. Washington, DC: Mathematical Association of America.

Dugdale, S. (1982). Green globs: A microcomputer application for graphing equations. Mathematics Teacher, 75, 208–214.

Dugdale, S. (1984). Computers: Applications unlimited. In V. Hansen & M. Zweng (Eds.), Computers in Mathematics Education [NCTM Yearbook] (pp. 82–89). Reston, VA: NCTM.

Dugdale, S., & Kibbey, D. (1989) Building a qualitative perspective before formalizing procedures: graphical representations as a foundation of trigonometric identities, Proceedings of the 11th Meeting of PME-NA. NJ.

Edwards, B. (1997). An undergraduate student's understanding and use of mathematical definitions in real analysis. In J. Dossey, J.O. Swafford, M. Parmentier & A.E. Dossey (Eds.), Proceedings of the 19th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Columbus, OH,17–22.

Edwards, C.H. (1979). The Historical Development of the Calculus. New York: Springer-Verlag.

Edwards, C.H., & Penney, D. (2002). Calculus. (6th ed.) Prentice Hall International.

Eisenberg, T., & Dreyfus, T. (1991). On visualizing functions transformations, Technical Report. Rehovot: The Weizmann Institute of Science.

Eisenberg, T., & Dreyfus, T. (1994). On understanding how students learn to visualize function transformations. In: E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.), Research in collegiate mathematics education (Vol. 1, pp. 45–68). Providence, RI: American Mathematical Society.

Ellis, R., & Gulik, D. (1991). Calculus, one and several variables, Saunders, Fort Worth.

Ellison, M. (1994). The effect of computer and calculator graphics on students’ ability to mentally construct calculus concepts. (University of Minnesota, 1993). Dissertation Abstracts International, 54/11, 4020.

English, L.D. (1997). Mathematical Reasoning. Analogies, Metaphors and Images. Mahwah, NJ: Erlbaum.

Ervynck, G. (1981). Conceptual difficulties for first year students in the acquisition of the notion of limit of a function, Actes du Cinquième Colloque du Groupe Internationale PME, Grenoble, 330-333.

Ervynck, G. (1981). Conceptual difficulties for first year university students in the acquisition of the notion of limit of a function. Proceedings of the Fifth Conference of the International Group for the Psychology of Mathematics Education, Berkeley, 330-333.

Espinoza, L. (1998). Organizaciones matemáticas y didácticas en torno al objeto ‘límite de función’. Del ‘pensamiento del profesor’ a la gestión de los momentos del studio. Doctoral Thesis, Universitat Autónoma de Barcelona, Barcelona.

Estes, K. A. (1990). Graphics technologies as instructional tools in applied calculus: Impact on instructor, students, and conceptual and procedural achievement. (University of South Florida, 1990). Dissertation Abstracts International, 51/04, 1147.

Even, R. (1988). Prospective secondary mathematics teachers’ knowledge and understanding about mathematical function. Unpublished Ph.D. thesis. MichiganStateUniversity.

Even, R. (1989). Prospective Secondary Mathematics Teachers Knowledge and Under-standing about Mathematical Functions. Unpublished doctoral dissertation, MichiganStateUniversity, East Lansing.

Even, R. (1990). Subject matter knowledge for teaching and the case of functions. Educational Studies in Mathematics, 21, 521–544.

Even, R. (1998). Factors involved in linking representations of functions. The Journal of Mathematical Behavior, 17(1), 105–122.

Falk, R. (1994). Infinity: A cognitive challenge. Theory and Psychology, 4(1), 35– 60.

Falk, R., Gassner, D., Ben Zoor, F., & Ben Simon, K. (1986). How do children cope with the infinity of numbers? Proceedings of the 10th Conference of the International Group for the Psychology of Mathematics Education, UK, London, 13–18.

Farrell, J.P., & Heyneman, S.P. (1994). Planning for textbook development in developing countries. In T. Husén and T.N. Postlethwaite (Eds.), International Encyclopedia of Education (2nd ed., Vol. 2, pp. 6360–6366). BPC Wheatons, Exeter.

Ferrini-Mundi, J., & Graham, K. (1994). Research in calculus learning: Understanding of limits, derivatives and integrals. In J. Kaput & E. Dubinsky (Eds.), Reserach Issues in Undergraduate Mathematics Learning. MAA Notes 33, Washington, pp. 31–45.

Ferrini-Mundy, J., & Graham K.G., (1991). An Overview of the Calculus Curriculum Reform Effort: Issues for Learning, Teaching, and Curriculum Development. American Mathematical Monthly, 98 (7), 627-635.

Fischbein E., Tirosh D., & Melamed, U. (1981). Is it possible to measure the intuitive acceptance of a mathematical statement? Educational Studies in Mathematics, 12, 491-512.

Fischbein, E. (1978). Intuition and mathematical education, Osnabrücker Schriften zür Mathematik, 1, 148–176.

Fischbein, E. (1982). Intuition and proof. For the Learning of Mathematics, 3(2), 9–24.

Fischbein, E. (1987). Intuition in Science and Mathematics.Dordrecht, The Netherlands: Reidel.

Fischbein, E. (2001). Tacit models and infinity. Educational Studies in Mathematics, 48(2-3), 309-329.

Fischbein, E., Jehiam, R., & Cohen, D. (1995). The concept of rational numbers in high school students and prospective teachers. Educational Studies in Mathematics, 29, 29–44.