NAVY RESEARCH CENTER LIQUID BODY ARMOUR full coverage

NAME / STEEL ARMOR VALUE / BALISTIC VALUE / Weight
Liquid Body Armor / - / 2/1 / 15 kg
ARMS:1 kg ea. / Legs 3 kg ea / Torso/neck 7 kg / Total 15 kg (modular)

Donning Time

Donning on without aide / Donning on with aide / Removing without aide / Removing with aide
2 min / 1/2 min / 1 m / 20 sec

Modifiers

Stealth Modifier / Observation Mod. / General Modifier / Quality / Weak Spots / Production Cost / $ Value
- / - / Warm / 10 / - / 100 / 10 000 US$

Liquid armor for Kevlar vests is one of the newest technologies being developed in 2004 at the U.S. Army Research Laboratory to save Soldiers' lives. This type of body armor is light and flexible, which allows soldiers to be more mobile and won't hinder an individual from running or aiming his or her weapon. The key component of liquid armor is a shear thickening fluid. STF is composed of hard particles suspended in a liquid. The liquid, polyethylene glycol, is non-toxic, and can withstand a wide range of temperatures. Hard, nano-particles of silica are the other components of STF. This combination of flowable and hard components results in a material with unusual properties.During normal handling, the STF is very deformable and flows like a liquid. However, once a bullet or frag hits the vest, it transitions to a rigid material, which prevents the projectile from penetrating the Soldier's body. To make liquid armor, STF is soaked into all layers of the Kevlar vest. The Kevlar fabric holds the STF in place, and also helps to stop the bullet. The saturated fabric can be soaked, draped, and sewn just like any other fabric. The Natick team has been working on this technology since 2001.The goal of the technology is to create a new material that is low cost and lightweight which offers equivalent or superior ballistic properties as compared to current Kevlar fabric, but has more flexibility and less thickness. Liquid armor is still undergoing laboratory tests, but researchers are enthusiastic about other applications that the technology might be applied to. The idea would first be to put this material in a soldier's sleeves and pants, areas that aren't protected by ballistic vests but need to remain flexible. The material could also be used for bomb blankets, to cover suspicious packages or unexploded ordnance. Liquid armor could even be applied to jump boots, so that they would stiffen during impact to support Soldiers' ankles. Three-dimensional woven, braided or stitched fibrous assemblies are textile architectures having fibers oriented so that both the in-plane and transverse tows are interlocked to form an integrated structure that has a unit cell with comparable dimensions in the all three orthogonal directions. This integrated architecture provides improved stiffness and strength in the transverse direction and impedes the separation of in-plane layers in comparison to traditional two-dimensional fabrics. Recent automated manufacturing techniques have substantially reduced costs and significantly improved the potential for large-scale production. Optimal orientations, fiber combinations and distributions of yarns have yet to be fully developed and perfected for 3D fabrics subjected to impact loading conditions. Current body armor rely ceramic plates to defeat penetrators. The rigidity and brittleness of these materials limit their use to only the torso of the war fighter. In addition, over time, environmental degradation and inadvertent drops damage the ceramic and render it ineffective. So that ample movement is still possible, innovative concepts that combine hybrid 3D fabrics with other materials such as ceramic and possible new nanoscale materials are needed. Optimal combinations of these materials need to be determined along with new methodologies to ascertain how to utilize inherent mechanisms (friction, microcracking, fiberbreakage, fiber bridging, etcÉ) of these systems for energy dissipation and strengthening.