Revisiting forest impact on
atmospheric water vapor transport and precipitation
Anastassia M. Makarieva1*, Victor G. Gorshkov1 and Bai-Lian Li2
1Theoretical Physics Division, Petersburg Nuclear Physics Institute, 188300, Gatchina, St.Petersburg, Russia
2XIEG-UCR International Center for Arid Land Ecology, University of California, Riverside, CA, 92521, USA
*Corresponding author: Anastassia M. Makarieva, e-mail: , fax: +7813713-19-63; tel: +7813714-60-96
Online Resource
1. Data
1.1 Precipitation data
Precipitation data set of Legates and Wilmott (1990) (LW90) was downloaded from http://disc.sci.gsfc.nasa.gov/precipitation/documentation/readme_html/legates_gauge_precip_readme.shtml
CCML precipitation data set (McGuire et al. 2001) was downloaded from http://eos-webster.sr.unh.edu (To quickly do so, the reader is advised to apply the following search criteria: Collection: Carbon Cycle Model Linkage-CCMLP CCMLP-Input; Spatial: Category: Continents; Location: Africa, Asia, Australia and Oceania, Europe, North America, South America; Temporal: not specified; Keyword: not specified; Freetext: precipitation.)
LW90 data are arranged as a 361´721 element array, with each 0.5´0.5 degree cell centered at the nodes of the grid. E.g., the data at 60.5°N are for grid cells with coordinates (60.5,-180), (60.5,-179.5),…,(60.5,179.5),(60.5,180), where negative values are for western longitude and positive for eastern longitude, such that the first and last points coincide. Data for, say, 30°E, include the point (-90,30), i.e. the South pole. The same point is included for all other longitudes (-90,31),(-90,32) etc.
The CCML data are conceptually arranged as a 360´720 array, with each 0.5´0.5 degree cell centered at the nodes of the grid. Longitude is counted from -179.75 to 179.75, latitude is counted from 89.75 to -89.75, e.g. (60.25,-179.75), (60.25,-179.25), …,(60.25,179.75).
To make the data comparable, we removed one copy (easternmost and southernmost) of the coinciding data points from LW90 to turn it into a 360´720 array. In the resulting array, LW90 cell (60.5,-180) corresponds to CCML cell (60.25,-179.75), with the general formula (LW90 Latitude) = (CCML Latitude) + 0.25°; (LW90 Longitude) = (CCML Longitude) - 0.25°. Everywhere in the paper we give LW90 coordinates of the cells. Since we analyze large-scale precipitation patterns (over a distance of 103 km or more) this minor discrepancy in the centering of grid cells may not have introduced any noticeable bias.
CCML data set contains monthly precipitation for years from 1950 to 1980 (41 year in total), while LW90 data set contains average monthly precipitation for the period 1920-1990. CCML data were averaged over 41 years for each month to be comparable to LW90 data.
1.2 Land cover data
Data for the land cover (Friedl et al. 2010) were downloaded from the The Oak Ridge National Laboratory Distributed Active Archive Center at http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=968 which is the IGBP Land Cover Data for the 2000-2001 time period. We used the half degree data set, which is a 360´720 element array with a total of 259200 cells. The original land cover data are arranged in 17 classes, which we grouped into four (Fig. 1):
Our class / IGBP classes / Number of cells (total 259200)Permanent water/ice / 0 Water Bodies
15 Permanent Snow and Ice / 171907
29959
Forest / 1 Evergreen Needleleaf Forest
2 Evergreen Broadleaf Forest
3 Deciduous Needleleaf Forest
4 Deciduous Broadleaf Forest
5 Mixed Forest / 3995
5381
1433
598
3660
Non-forest vegetation / 6 Closed Shrublands
7 Open Shrublands
8 Woody Savannas
9 Savannas
10 Grasslands
11 Permanent Wetlands
12 Croplands
14 Cropland/Natural Vegetation Mosaic / 223
14944
2874
3669
4140
301
6913
1483
Desert / 13 Urban and Built-Up
16 Barren or Sparsely Vegetated
17 Unclassified / 12
7635
87
1.3 Mean elevation data
Data on mean elevation in half degree grid cells (Verdin 2001), also a 360´720 array, was downloaded from http://daac.ornl.gov/ISLSCP_II/guides/hydro1k_elevation_xdeg.html
1.4 Runoff data
Runoff data were taken from the UNH, GRDC, Global Composite Runoff Data Set (v1.0). Data were downloaded from “A Global Change Master Directory Portal for the Global Terrestrial Observing System” using the following link:
http://gcmd.nasa.gov/KeywordSearch/Metadata.do?Portal=gtos&KeywordPath=%5BFreetext%3D%27DIF%2FIDN_Node%3AGOSIC%2FGTOS+AND+DIF%2FKeyword%3AWater+discharge%27%5D&OrigMetadataNode=GCMD&EntryId=UNH_GRDC_GCRDS&MetadataView=Full&MetadataType=0&lbnode=mdlb2
The runoff data page is here: http://www.grdc.sr.unh.edu/html/Data/index.html
Data represent a 0.5´0.5 ° latitude/longitude grid with missing values in quite a lot of cells. In our analysis, Fig. 5, we only used observations (i.e., files obs_ro##.grd from runoff.zip at http://www.grdc.sr.unh.edu/html/Data/index.html) and not model reconstructions.
2. Information on precipitation transects
Table 2. Studied transects
Transect / Short name / Lat1 / Lon1 / Lat2 / Lon2 / N / L (103km)TROPICAL
Amazon A11 AB / Am-AB / 0 / -50 / -5. / -70. / 41 / 2.29
Amazon A11 AC / Am-AC / 0 / -50 / -6. / -75.5 / 52 / 2.91
Amazon A11 AD / Am-AD / 0 / -50 / -6.5 / -77.5 / 56 / 3.14
Amazon MGL / Am2 / 0 / -50 / -5. / -75. / 51 / 2.83
Congo A11: AD1 / Co-AD / 0 / 9.5 / 0. / 30. / 42 / 2.28
Congo MGL: BC / Co-BC / 0 / 10 / 0. / 27. / 35 / 1.89
Congo A11: AE / Co-AE / 0 / 10 / 0. / 38. / 54 / 3.11
BOREAL
Yenisey basin A11 / Ye1 / 73 / 80.5 / 50. / 110. / 45 / 2.93
Yenisey basin MGL / Ye2 / 73.5 / 80.5 / 52.5 / 94.5 / 18 / 2.43
Lena basin / Le / 73 / 121 / 47.5 / 121. / 52 / 2.83
Ob basin / Ob / 73.5 / 70 / 57.5 / 70. / 33 / 1.78
Mackenzie basin / Ma / 69 / -136.5 / 55.5 / -113.5 / 21 / 1.89
Yenisey A11 tundra / Ye1-t / 73 / 80.5 / 62. / 94.5 / 21 / 1.35
Yenisey MGL tundra / Ye2-t / 73.5 / 80.5 / 62.5 / 90.5 / 10 / 1.29
Lena tundra / Le-t / 73 / 121 / 67.5 / 121. / 12 / 0.612
Ob tundra / Ob-t / 73.5 / 70 / 64.5 / 70. / 19 / 1.
Mackenzie tundra / Ma-t / 69 / -136.5 / 64. / -124.5 / 9 / 0.767
Yenisey A11 forest / Ye1-f / 62 / 94.5 / 50. / 110. / 25 / 1.64
Yenisey MGL forest / Ye2-f / 62.5 / 90.5 / 52.5 / 94.5 / 9 / 1.14
Lena forest / Le-f / 67.5 / 121 / 47.5 / 121. / 41 / 2.22
Ob forest / Ob-f / 64.5 / 70 / 57.5 / 70. / 15 / 0.778
Mackenzie forest / Ma-f / 64 / -124.5 / 55.5 / -113.5 / 13 / 1.13
Eurasia forest / Eu / 61 / 5.5 / 61. / 137.5 / 252 / 5.85
TEMPERATE
Florida Panhandle1 / Fl / 30.5 / -85 / 38. / -85. / 16 / 0.834
North America AB forest2 / No-AB / 37.5 / -77 / 37.5 / -94. / 35 / 1.5
North America BC non-forest2 / No-BC / 37.5 / -94 / 37.5 / -106. / 25 / 1.06
Short names denote transects shown by white arrows in Fig. 1. Lat1, Lon1, Lat2 and Lon2 are the latitude and longitude of the beginning and the end of the transect, respectively. N is the number of 0.5°´0.5° cells in the transect. Length (thousand km) is the length of the transect in thousand km. “Tundra” and “forest” refer to the tundra and forest parts of the meridional boreal transects.
1While the data of LW90 cover the whole planet, CCML data are for land only. For this reason, in some transects studied by A11 comparison of LW90 data with CCML was made for a smaller part of the transect. In particular, CCML data do not exist for 0°S 9°E, which is the first cell in the Congo transect of A11. Therefore, this cell was not included into statistical analysis: the transect was considered from 9.5°E to 30°E. Similarly, in the Florida Panhandle transect of A11 there is no CCML data for the first cell 30°N 85°W, so the transect was considered from 30.5°N to 38°N, rather than from 30°N as in A11.
2North American transect was chosen by MGL to run along the northern border of the large forested area located in U.S.A. south to 40°N. According to the 2000-2001 land cover data of the IGBP (Friedl et al. 2010), Fig. 1, the northern border of this area lies at 37.5°N rather than at 40°N. All data in this paper are shown for the transect going along the 37.5°N parallel.
In latitudinal transects and strictly meridional (Co, Eu, No, Le, Ob), distance from the coast was counted along the parallel or the meridian, respectively, by multiplying the number of cells by a unit distance corresponding to half a degree at a given latitude or by 55.5 km along the meridian. For “slant” transects, i.e., those where both latitude and longitude changed with distance from the ocean (Am, Am2, Ma, Ye1, Ye2) for each cell distance from the ocean was calculated as the shortest distance between the beginning of the transect and the current cell. The following cells were considered for these transects:
Table 3. Grid cells considered for Am1, Am2, Ma, Ye1 and Ye2 transects
Some neighboring cells originally present in Yenisey transect of A11 (Ye1) were located very closely to each other (their distance to the ocean differed by less than 12 km), see Fig. 9 in A11. One in each pair of such twin cells was removed from the list, with the goal the cells taken into consideration in the statistical analysis to be relatively uniformly spread in space. Taking closely situated cells would improperly increase the statistical weight of precipitation values observed in those particular cells.
Transect / Cell Number / Latitude / Longitude / Distance from the ocean (km)Am2 / 1 / 0. / -50. / 0
Am2 / 2 / 0. / -50.5 / 56
Am2 / 3 / 0. / -51. / 111
Am2 / 4 / 0. / -51.5 / 167
Am2 / 5 / 0. / -52. / 222
Am2 / 6 / -0.5 / -52.5 / 283
Am2 / 7 / -0.5 / -53. / 338
Am2 / 8 / -0.5 / -53.5 / 393
Am2 / 9 / -0.5 / -54. / 448
Am2 / 10 / -0.5 / -54.5 / 503
Am2 / 11 / -1. / -55. / 567
Am2 / 12 / -1. / -55.5 / 622
Am2 / 13 / -1. / -56. / 676
Am2 / 14 / -1. / -56.5 / 731
Am2 / 15 / -1. / -57. / 786
Am2 / 16 / -1.5 / -57.5 / 850
Am2 / 17 / -1.5 / -58. / 905
Am2 / 18 / -1.5 / -58.5 / 960
Am2 / 19 / -1.5 / -59. / 1014
Am2 / 20 / -1.5 / -59.5 / 1069
Am2 / 21 / -2. / -60. / 1134
Am2 / 22 / -2. / -60.5 / 1188
Am2 / 23 / -2. / -61. / 1243
Am2 / 24 / -2. / -61.5 / 1298
Am2 / 25 / -2. / -62. / 1352
Am2 / 26 / -2.5 / -62.5 / 1417
Am2 / 27 / -2.5 / -63. / 1472
Am2 / 28 / -2.5 / -63.5 / 1526
Am2 / 29 / -2.5 / -64. / 1581
Am2 / 30 / -2.5 / -64.5 / 1636
Am2 / 31 / -3. / -65. / 1700
Am2 / 32 / -3. / -65.5 / 1755
Am2 / 33 / -3. / -66. / 1809
Am2 / 34 / -3. / -66.5 / 1864
Am2 / 35 / -3. / -67. / 1919
Am2 / 36 / -3.5 / -67.5 / 1983
Am2 / 37 / -3.5 / -68. / 2038
Am2 / 38 / -3.5 / -68.5 / 2092
Am2 / 39 / -3.5 / -69. / 2147
Am2 / 40 / -3.5 / -69.5 / 2202
Am2 / 41 / -4. / -70. / 2266
Am2 / 42 / -4. / -70.5 / 2321
Am2 / 43 / -4. / -71. / 2375
Am2 / 44 / -4. / -71.5 / 2430
Am2 / 45 / -4. / -72. / 2484
Am2 / 46 / -4.5 / -72.5 / 2549
Am2 / 47 / -4.5 / -73. / 2603
Am2 / 48 / -4.5 / -73.5 / 2658
Am2 / 49 / -4.5 / -74. / 2712
Am2 / 50 / -4.5 / -74.5 / 2767
Am2 / 51 / -5. / -75. / 2831
Am-AD / 1 / 0. / -50. / 0
Am-AD / 2 / 0. / -50.5 / 56
Am-AD / 3 / 0. / -51. / 111
Am-AD / 4 / 0. / -51.5 / 167
Am-AD / 5 / -0.5 / -52. / 229
Am-AD / 6 / -0.5 / -52.5 / 283
Am-AD / 7 / -0.5 / -53. / 338
Am-AD / 8 / -0.5 / -53.5 / 393
Am-AD / 9 / -1. / -54. / 458
Am-AD / 10 / -1. / -54.5 / 513
Am-AD / 11 / -1. / -55. / 567
Am-AD / 12 / -1. / -55.5 / 622
Am-AD / 13 / -1.5 / -56. / 688
Am-AD / 14 / -1.5 / -56.5 / 742
Am-AD / 15 / -1.5 / -57. / 796
Am-AD / 16 / -1.5 / -57.5 / 850
Am-AD / 17 / -2. / -58. / 917
Am-AD / 18 / -2. / -58.5 / 971
Am-AD / 19 / -2. / -59. / 1025
Am-AD / 20 / -2. / -59.5 / 1079
Am-AD / 21 / -2.5 / -60. / 1146
Am-AD / 22 / -2.5 / -60.5 / 1200
Am-AD / 23 / -2.5 / -61. / 1254
Am-AD / 24 / -2.5 / -61.5 / 1308
Am-AD / 25 / -3. / -62. / 1375
Am-AD / 26 / -3. / -62.5 / 1429
Am-AD / 27 / -3. / -63. / 1483
Am-AD / 28 / -3. / -63.5 / 1537
Am-AD / 29 / -3.5 / -64. / 1604
Am-AD / 30 / -3.5 / -64.5 / 1658
Am-AD / 31 / -3.5 / -65. / 1712
Am-AD / 32 / -3.5 / -65.5 / 1766
Am-AD / 33 / -4. / -66. / 1832
Am-AD / 34 / -4. / -66.5 / 1886
Am-AD / 35 / -4. / -67. / 1940
Am-AD / 36 / -4. / -67.5 / 1995
Am-AD / 37 / -4.5 / -68. / 2061
Am-AD / 38 / -4.5 / -68.5 / 2115
Am-AD / 39 / -4.5 / -69. / 2169
Am-AD / 40 / -4.5 / -69.5 / 2223
Am-AD / 41 / -5. / -70. / 2290
Am-AD / 42 / -5. / -70.5 / 2343
Am-AD / 43 / -5. / -71. / 2397
Am-AD / 44 / -5. / -71.5 / 2452
Am-AD / 45 / -5.5 / -72. / 2518
Am-AD / 46 / -5.5 / -72.5 / 2572
Am-AD / 47 / -5.5 / -73. / 2626
Am-AD / 48 / -5.5 / -73.5 / 2680
Am-AD / 49 / -6. / -74. / 2746
Am-AD / 50 / -6. / -74.5 / 2800
Am-AD / 51 / -6. / -75. / 2854
Am-AD / 52 / -6. / -75.5 / 2908
Am-AD / 53 / -6.5 / -76. / 2974
Am-AD / 54 / -6.5 / -76.5 / 3028
Am-AD / 55 / -6.5 / -77. / 3082
Am-AD / 56 / -6.5 / -77.5 / 3136
Ma / 1 / 69. / -136.5 / 0
Ma / 2 / 68.5 / -135. / 82
Ma / 3 / 68. / -133. / 181
Ma / 4 / 67.5 / -131.5 / 265
Ma / 5 / 67. / -130. / 350
Ma / 6 / 66. / -128.5 / 476
Ma / 7 / 65.5 / -127. / 563
Ma / 8 / 65. / -125.5 / 651
Ma / 9 / 64. / -124.5 / 767
Ma / 10 / 63.5 / -123. / 856
Ma / 11 / 63. / -122. / 931
Ma / 12 / 62. / -121. / 1051
Ma / 13 / 61.5 / -120. / 1127
Ma / 14 / 60.5 / -119. / 1249
Ma / 15 / 60. / -118. / 1326
Ma / 16 / 59. / -117. / 1450
Ma / 17 / 58. / -116. / 1575
Ma / 18 / 57.5 / -115.5 / 1638
Ma / 19 / 56.5 / -114.5 / 1764
Ma / 20 / 56. / -114. / 1828
Ma / 21 / 55.5 / -113.5 / 1892
Ye1 / 1 / 73. / 80.5 / 0
Ye1 / 2 / 71.5 / 82. / 174
Ye1 / 3 / 71. / 83. / 238
Ye1 / 4 / 70.5 / 83.5 / 297