Advanced Symbolic Logic, Homework # 5 Page 74, problem # 1, part b.

p ® q. q ® r. ®. p ®r

q q. qr. ®. q r

-( q q. qr) q q r

-( q q) q -( qr) q q r

p q q q q r

Page 67 # 4 third pair

pqr q pq q pr q p pqqqr . pqqq . pqqr . pqq

pq q p p q q . p q

p p

Yes, 'p' is equivalent to 'p'

Page 74, problem # 1, part c.

p ® q. ® p : «

q q. ® p : «

-( q q) q p : «

p q p . «

p q p . .q. –( p q p )p

p q p q. –( p).p

p q p q: q q. : p

p q p q: . q q : p

p q p q: p q q p (All clauses inconsistent, so too the entire schema)

Additional problem from homework sheet:

-(pq)®: v .«

pq q: v .«

pq q : v .. q. –(v )p

pq q q q qpr

pq q q Simplified version removing obviously redundant clause

Developed Alternational Normal Form

p q r

pr q p q r

pr q p q rp q r

pr q p q rpq q rpq rq q r

pr q p q rpq q rq q r (eliminating obviously redundant clause)

Page 74, # 3

YES, this is a sound general method for testing two ANF schemata for equivalence. Each clause of an ANF schema S1 implies another ANF schema S2, if, but only if, S1 (the alternation of the implying clauses) implies S2 (which follows from (ix) p 63). If the same is true for S2 vis S1, then S2 implies S1. Since equivalence is mutual implication, this is a sound general method for testing two ANF schemata for equivalence.

Advanced Symbolic Logic

Investigate for redundant clauses and literals

pr q qr q ps q ps q s

pr ®. qr q ps q ps q s

TTT®^TqTsqT^sq^s

s

T^ pr is not redundant

qr®. pr q ps q ps q s

TT®. p^T q ps q p^s q ^s

^ q ps q ^ q ^

ps

Ts ^s

^  qr is not redundant

ps®.pr q qr q ps q s

TT®.Tr q qr q TT q T

r q qr q

patently valid ps is a redundant clause

ps ®.pr q qr q s

TTT® TT

T psis redundant

s ®.pr q qr

TT® ^ q ^ s is not redundant

pr q qr q s all redundant clauses eliminated, now test for redundant literals

r ®.pr q qr q s

TT®. pTT q ^r q^s

p p in pr is not redundant

pr .® .pr q qr q s

TT.®TT q qT q ^s

q q in pr is redundant

pr q qr q s Fully simplified
Transform into a conjunctional normal schema ( v. p. 83): (dualize, distribute, simplify, dualize)

v r v pq alternational normal form

q. qr .pqqq (dual to the original)

q r q q r . pqqq (distribution)

p q q q q rp qrq qr q p q q q q rp q rq q r

q q q rq q q rp (dropped inconsistent clauses)

q q q rp (dropped clauses that contain other clauses)

qq. q . qrqp conjunctional normal form

In the axiom system of Chapter 13, prove:

® . ®. q ® p:®: p ®. q ® p

Substitute '' for 'q' in Axiom II to get:

1. p ® . ®

Substitute ' ® ' for 'q' in Axiom I to get:

2. p ® . ® : ® :. ® . ® r : ® . p ® r

Substitute 'q ® p' for r in formula 2 to get:

3.  p ® . ® : ® :. ® . ®. q ® p : ® : p ® . q ® p

Formulas 1 and 3 together with the inference rule Modus Ponens gives:

4. ® . ®.q®p:®:p®.q®p Q.E.D.