The Pollution Within

By David Ewing Duncan

http://www7.nationalgeographic.com/ngm/0610/feature4/index.html

National Geographic Magazine October 2006

Modern chemistry keeps insects from ravaging crops, lifts stains from carpets, and saves lives. But the ubiquity of chemicals is taking a toll. Many of the compounds absorbed by the body stay there for years—and fears about their health effects are growing.

My journalist-as-guinea-pig experiment is taking a disturbing turn. A Swedish chemist is on the phone, talking about flame retardants, chemicals added for safety to just about any product that can burn. Found in mattresses, carpets, the plastic casing of televisions, electronic circuit boards, and automobiles, flame retardants save hundreds of lives a year in the United States alone. These, however, are where they should not be: inside my body.

Åke Bergman of Stockholm University tells me he has received the results of a chemical analysis of my blood, which measured levels of flame-retarding compounds called polybrominated diphenyl ethers. In mice and rats, high doses of PBDEs interfere with thyroid function, cause reproductive and neurological problems, and hamper neurological development. Little is known about their impact on human health.

"I hope you are not nervous, but this concentration is very high," Bergman says with a light Swedish accent. My blood level of one particularly toxic PBDE, found primarily in U.S.-made products, is 10 times the average found in a small study of U.S. residents and more than 200 times the average in Sweden. The news about another PBDE variant—also toxic to animals—is nearly as bad. My levels would be high even if I were a worker in a factory making the stuff, Bergman says.

In fact I'm a writer engaged in a journey of chemical self-discovery. Last fall I had myself tested for 320 chemicals I might have picked up from food, drink, the air I breathe, and the products that touch my skin—my own secret stash of compounds acquired by merely living. It includes older chemicals that I might have been exposed to decades ago, such as DDT and PCBs; pollutants like lead, mercury, and dioxins; newer pesticides and plastic ingredients; and the near-miraculous compounds that lurk just beneath the surface of modern life, making shampoos fragrant, pans nonstick, and fabrics water-resistant and fire-safe.

The tests are too expensive for most individuals—National Geographic paid for mine, which would normally cost around $15,000—and only a few labs have the technical expertise to detect the trace amounts involved. I ran the tests to learn what substances build up in a typical American over a lifetime, and where they might come from. I was also searching for a way to think about risks, benefits, and uncertainty—the complex trade-offs embodied in the chemical "body burden" that swirls around inside all of us.

Now I'm learning more than I really want to know.

Bergman wants to get to the bottom of my flame-retardant mystery. Have I recently bought new furniture or rugs? No. Do I spend a lot of time around computer monitors? No, I use a titanium laptop. Do I live near a factory making flame retardants? Nope, the closest one is over a thousand miles (1,600 kilometers) away. Then I come up with an idea.

"What about airplanes?" I ask.

"Yah," he says, "do you fly a lot?"

"I flew almost 200,000 miles (300,000 kilometers) last year," I say. In fact, as I spoke to Bergman, I was sitting in an airport waiting for a flight from my hometown of San Francisco to London.

"Interesting," Bergman says, telling me that he has long been curious about PBDE exposure inside airplanes, whose plastic and fabric interiors are drenched in flame retardants to meet safety standards set by the Federal Aviation Administration and its counterparts overseas. "I have been wanting to apply for a grant to test pilots and flight attendants for PBDEs," Bergman says as I hear my flight announced overhead. But for now the airplane connection is only a hypothesis. Where I picked up this chemical that I had not even heard of until a few weeks ago remains a mystery. And there's the bigger question: How worried should I be?

The same can be asked of other chemicals I've absorbed from air, water, the nonstick pan I used to scramble my eggs this morning, my faintly scented shampoo, the sleek curve of my cell phone. I'm healthy, and as far as I know have no symptoms associated with chemical exposure. In large doses, some of these substances, from mercury to PCBs and dioxins, the notorious contaminants in Agent Orange, have horrific effects. But many toxicologists—and not just those who have ties to the chemical industry—insist that the minuscule smidgens of chemicals inside us are mostly nothing to worry about.

"In toxicology, dose is everything," says Karl Rozman, a toxicologist at the University of Kansas Medical Center, "and these doses are too low to be dangerous." One part per billion (ppb), a standard unit for measuring most chemicals inside us, is like putting half a teaspoon (two milliliters) of red dye into an Olympic-size swimming pool. What's more, some of the most feared substances, such as mercury, dissipate within days or weeks—or would if we weren't constantly re-exposed.

Yet even though many health statistics have been improving over the past few decades, a few illnesses are rising mysteriously. From the early 1980s through the late 1990s, autism increased tenfold; from the early 1970s through the mid-1990s, one type of leukemia was up 62 percent, male birth defects doubled, and childhood brain cancer was up 40 percent. Some experts suspect a link to the man-made chemicals that pervade our food, water, and air. There's little firm evidence. But over the years, one chemical after another that was thought to be harmless turned out otherwise once the facts were in.

The classic example is lead. In 1971 the U.S. Surgeon General declared that lead levels of 40 micrograms per deciliter of blood were safe. It's now known that any detectable lead can cause neurological damage in children, shaving off IQ points. From DDT to PCBs, the chemical industry has released compounds first and discovered damaging health effects later. Regulators have often allowed a standard of innocent until proven guilty in what Leo Trasande, a pediatrician and environmental health specialist at Mount Sinai Hospital in New York City, calls "an uncontrolled experiment on America's children."

Each year the U.S. Environmental Protection Agency (EPA) reviews an average of 1,700 new compounds that industry is seeking to introduce. Yet the 1976 Toxic Substances Control Act requires that they be tested for any ill effects before approval only if evidence of potential harm exists—which is seldom the case for new chemicals. The agency approves about 90 percent of the new compounds without restrictions. Only a quarter of the 82,000 chemicals in use in the U.S. have ever been tested for toxicity.

Studies by the Environmental Working Group, an environmental advocacy organization that helped pioneer the concept of a "body burden" of toxic chemicals, had found hundreds of chemical traces in the bodies of volunteers. But until recently, no one had even measured average levels of exposure among large numbers of Americans. No regulations required it, the tests are expensive, and technology sensitive enough to measure the tiniest levels didn't exist.

Last year the Centers for Disease Control and Prevention (CDC) took a step toward closing that gap when it released data on 148 substances, from DDT and other pesticides to metals, PCBs, and plastic ingredients, measured in the blood and urine of several thousand people. The study said little about health impacts on the people tested or how they might have encountered the chemicals. "The good news is that we are getting real data about exposure levels," says James Pirkle, the study's lead author. "This gives us a place to start."

I began my own chemical journey on an October morning at the Mount Sinai Hospital in New York City, where I gave urine and had blood drawn under the supervision of Leo Trasande. Trasande specializes in childhood exposures to mercury and other brain toxins. He had agreed to be one of several expert advisers on this project, which began as a Sinai phlebotomist extracted 14 vials of blood—so much that at vial 12 I felt woozy and went into a cold sweat. At vial 13 Trasande grabbed smelling salts, which hit my nostrils like a whiff of fire and allowed me to finish.

From New York my samples were shipped to Axys Analytical Services on Vancouver Island in Canada, one of a handful of state-of-the-art labs specializing in subtle chemical detection, analyzing everything from eagle eggs to human tissue for researchers and government agencies. A few weeks later, I followed my samples to Canada to see how Axys teased out the tiny loads of compounds inside me.

I watched the specimens go through multiple stages of processing, which slowly separated sets of target chemicals from the thousands of other compounds, natural and unnatural, in my blood and urine. The extracts then went into a high-tech clean room containing mass spectrometers, sleek, freezer-size devices that work by flinging the components of a sample through a vacuum, down a long tube. Along the way, a magnetic field deflects the molecules, with lighter molecules swerving the most. The exact amount of deflection indicates each molecule's size and identity.

A few weeks later, Axys sent me my results—a grid of numbers in parts per billion or trillion—and I set out to learn, as best I could, where those toxic traces came from.

Some of them date back to my time in the womb, when my mother downloaded part of her own chemical burden through the placenta and the umbilical cord. More came after I was born, in her breast milk.

Once weaned, I began collecting my own chemicals as I grew up in northeastern Kansas, a few miles outside Kansas City. There I spent countless hot, muggy summer days playing in a dump near the Kansas River. Situated on a high limestone bluff above the fast brown water lined by cottonwoods and railroad tracks, the dump was a mother lode of old bottles, broken machines, steering wheels, and other items only boys can fully appreciate.

This was the late 1960s, and my friends and I had no way of knowing that this dump would later be declared an EPA superfund site, on the National Priority List for hazardous places. It turned out that for years, companies and individuals in this corner of Johnson County had dumped thousands of pounds of material contaminated with toxic chemicals here. "It was started as a landfill before there were any rules and regulations on how landfills were done," says Denise Jordan-Izaguirre, the regional representative for the federal Agency for Toxic Substances and Disease Registry. "There were metal tailings and heavy metals dumped in there. It was unfenced, unrestricted, so kids had access to it."

Kids like me.

Now capped, sealed, and closely monitored, the dump, called the Doepke-Holliday Site, also happens to be half a mile upriver from a county water intake that supplied drinking water for my family and 45,000 other households. "From what we can gather, there were contaminants going into the river," says Shelley Brodie, the EPA Remedial Project Manager for Doepke. In the 1960s, the county treated water drawn from the river, but not for all contaminants. Drinking water also came from 21 wells that tapped the aquifer near Doepke.

When I was a boy, my corner of Kansas was filthy, and the dump wasn't the only source of toxins. Industry lined the river a few miles away—factories making cars, soap, and fertilizers and other agricultural chemicals—and a power plant belched fumes. When we drove past the plants toward downtown Kansas City, we plunged into a noxious cloud that engulfed the car with smoke and an awful chemical stench. Flames rose from fertilizer plant stacks, burning off mustard-yellow plumes of sodium, and animal waste poured into the river. In the nearby farmland, trucks and crop dusters sprayed DDT and other pesticides in great, puffy clouds that we kids sometimes rode our bikes through, holding our breath and feeling very brave.

Today the air is clear, and the river free of effluents—a visible testament to the success of the U.S. environmental cleanup, spurred by the Clean Air and Clean Water Acts of the 1970s. But my Axys test results read like a chemical diary from 40 years ago. My blood contains traces of several chemicals now banned or restricted, including DDT (in the form of DDE, one of its breakdown products) and other pesticides such as the termite-killers chlordane and heptachlor. The levels are about what you would expect decades after exposure, says Rozman, the toxicologist at the University of Kansas Medical Center. My childhood playing in the dump, drinking the water, and breathing the polluted air could also explain some of the lead and dioxins in my blood, he says.

I went to college at a place and time that put me at the height of exposure for another set of substances found inside me—PCBs, once used as electrical insulators and heat-exchange fluids in transformers and other products. PCBs can lurk in the soil anywhere there's a dump or an old factory. But some of the largest releases took place along New York's Hudson River from the 1940s to the 1970s, when General Electric used PCBs at factories in the towns of Hudson Falls and Fort Edward. About 140 miles (225 kilometers) downstream is the city of Poughkeepsie, where I attended Vassar College in the late 1970s.

PCBs, oily liquids or solids, can persist in the environment for decades. In animals, they impair liver function, raise blood lipids, and cause cancers. Some of the 209 different PCBs chemically resemble dioxins and cause other mischief in lab animals: reproductive and nervous system damage, as well as developmental problems.