4. E. L. Aero, S. A. Vakulenko, Asymptotical behaviour of solutions

for a strongly nonlinear model of a crystal lattice

Teor. Matem. Fiz., T. 142, N3, 2005.

5. S. Vakulenko and S. Genieys, Patterning by genetic networks,

Mathematical Methods in Applied Sciences, V29, (2005) pp. 173 -

190.GENE_N~1.PS

6. S. Vakulenko, D. Grigoriev, Algorithms and complexity

in biological pattern formation problems,

Annales of Pure and Applied Logic (in print, 2006)

7. S.A. Vakulenko, D. Yu. Grigoriev, Evoluiton in random

environment and structural stability, Zapiski seminarov POMIRAN,

V. 325, (2005), p.28 –60VAGR2.PS

[8] S.A. Vakulenko, An Analytical Approach to

Convective Reaction Fronts,

Asymptotical Analysis, 2003.

[9] { S. A. Vakulenko} and V. Volpert,

{ New effects in propagation of waves}

{for reaction-diffusion systems},

Asymptotical Analysis, 2003.

[10] A. K. Abramian, D. A. Indeitzev

and S. A. Vakulenko,

Wave Localization in Hydroelastic Systems,

Flow, Turbulence and Combustion {\bf 61}: 1-20, 1999.

[11] S. A. Vakulenko,

Computational capacities of the time reccurent

neural networks, Journal Phys. A, Math. Gen.

{\bf 35}, pp. 2539-2554, 2002.A21102.PDF

[12] A. K. Abramian and { S. A. Vakulenko},

Dissipative and Hamiltonian systems with chaotic

behaviour: an analytical approach,

Theoretical and Mathem. Physics, {\bf 130}(2): 244-254

(2002).HYPRON2.PS

[13] Vakulenko, S.; Volpert, V. Generalized travelling waves for

perturbed monotone reaction-diffusion systems. Nonlinear Anal. 46 (2001),

no. 6, Ser. A: Theory Methods, 757--776.

[14] Vakulenko, S. A. Dissipative systems generating any

structurally stable chaos.

Adv. Differential Equations 5 (2000), no. 7-9, 1139--1178.

[15] Gordon, P. V.; Vakulenko, S. A. Merging and

interacting wave fronts for reaction-diffusion equations.

Arch. Mech. (Arch. Mech. Stos.) 51 (1999), no. 5, 547--558.

[16] Vakulenko, S. A.; Gordon, P. V.

Neural networks with prescribed large time behaviour.

J. Phys. A. Math. Gen. 31 (1998), no. 47, 9555--9570.

[17] Vakulenko, S. A.; Gordon, P. V. Propagation and

scattering of kinks in a nonhomogeneous nonlinear medium. (Russian)

Teoret. Mat. Fiz. 112 (1997), no. 3, 384--394; translation

in Theoret. and Math. Phys. 112 (1997), no. 3, 1104--1112 (1998)

[18] Aero E. L., Vakulenko, S. A.

Kinematics of nonlinear oriented deformations in

nematic liquid crystals in a homogeneous magnetic field. (Russian)

Prikl. Mat. Mekh. 61 (1997),

no. 3, 479--490; translation in J. Appl. Math. Mech. 61 (1997), no. 3,

463--473.

[19] S. Frenkel, B. Stuhn, { S. Vakulenko}, A. Vilesov,

Kinetics of superstructure formation, J. of Chemical Phys.

(1997), 106, pp. 3412-3416.

[20] Gordon, P. V.; Vakulenko, S. A.

Periodic kinks in reaction-diffusion systems.

J. Phys. A. Math. Gen. 31 (1998), no. 3, L67--L70.

[21] Vakulenko, S. A.; Molotkov, I. A.

The initial stage of evolution of displacement fronts in a nonlinear

filtration problem. (Russian) Prikl. Mat. Mekh. 61 (1997), no. 1, 108--114;

translation in J. Appl. Math. Mech. 61 (1997),

no. 1, 103--109

[22]

Vakulenko, S. A. Reaction-diffusion systems with prescribed

large time behaviour. Ann. Inst. H. Poincare

V. 66 (1997), no. 4, 373--410.

[23] Bessonov, N. M.; Vakulenko, S. A.

Connected kink states in nonhomogeneous nonlinear media. (Russian)

Teoret. Mat. Fiz. 107 (1996), no. 1, 115--128; translation in Theoret.

and Math. Phys. 107 (1996), no. 1, 511--522.

[24] Vakulenko, S. A. A system of coupled oscillators

can have arbitrary prescribed attractors. J. Phys. A 27 (1994), no. 7,

2335--2349.

[25] Vakulenko, S. A. The oscillating wave fronts.

Nonlinear Anal. 19 (1992), no. 11, 1033--1046.

[26] Molotkov, I. A.; Vakulenko, S. A.

Autowave propagation for general reaction diffusion systems.

Wave Motion 17 (1993), no. 3, 255-266.

[27] Vakulenko, S. A. Justification of asymptotic solutions for

one-dimensional nonlinear parabolic equations. (Russian)

Mat. Zametki 52 (1992), no. 3, 10--16, 157; translation in

Math. Notes 52 (1992), no. 3-4, 875--880

[28] Vakulenko, S. A. Existence of chemical waves with a

complex motion of the front. (Russian) Zh. Vychisl. Mat. i Mat. Fiz.

31 (1991), no. 5, 735--744; translation in Comput.

Math. Math. Phys. 31 (1991), no. 5, 68--76 (1992)

[29] Aero E. L., { Vakulenko S. A.} and Vilesov A. D.

Kinetic theory

of macrophase separation in block copolymers, Journal de Physique

France 51, 1990, p. 2205 -2226.

[30] Vakulenko, S. A.

The dynamic Whitham principle for parabolic equations and its justification.

(Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 179

(1989), Mat. Vopr. Teor. Rasprostr. Voln. 19, 45, 46--51, 188;

translation in J. Soviet Math. 57 (1991), no. 3, 3093--3096

[31] Vakulenko, S. A.

A variational principle for nonlinear concentrated waves. (Russian)

Prikl. Mat. Mekh. 53 (1989), no. 4, 636--641;

translation in J. Appl. Math. Mech. 53 (1989),

no. 4, 495--500 (1990)

[32] Molotkov, I. A.; Vakulenko, S. A.

Wave beams in an inhomogeneous medium with saturated nonlinearity.

Wave Motion 10 (1988), no. 4, 349--354.

[34] Vakulenko, S. A.; Molotkov, I. A.

Waves in a layered nonlinear medium. (Russian) Vestnik Leningrad.

Univ. Fiz. Khim. 1987, vyp. 2, 21--27, 134.

[35] Vakulenko, S. A.; Molotkov, I. A.

Stationary wave beams in a strongly nonlinear three-dimensional

inhomogeneous medium. (Russian) Mathematical questions in the theory of

wave propagation, No. 15. Zap. Nauchn. Sem. Leningrad.

Otdel. Mat. Inst. Steklov. (LOMI) 148 (1985), 52--60, 191.

[36]

Vakulenko, S. A. Formal-asymptotic integration of a class of weakly

nonlinear \

infinite-dimensional Hamiltonian systems. (Russian)

Mathematical questions in the theory of

wave propagation, No. 15. Zap. Nauchn. Sem. Leningrad.

Otdel. Mat. Inst. Steklov. (LOMI) 148 (1985), 42--51, 191.

[37]

Molotkov, I. A.; Vakulenko, S. A.

Evolution of a wave beam in an inhomogeneous and strongly nonlinear medium.

(Russian) Vestnik Leningrad. Univ. Fiz. Khim. 1985, vyp. 2,

10--15, 122.

[38] Vakulenko, S. A.

Construction of asymptotic solutions for weakly

nonlinear Hamiltonian systems. (Russian)

Mathematical questions in the theory of wave propagation, 14.

Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 140 (1984),

36--40. 35C20

[39] Vakulenko, S. A.

Justification of an asymptotic formula for solutions of a

perturbed Klein-Fock-Gordon equation. (Russian)

Mathematical questions in the theory of wave

propagation, 11. Zap. Nauchn. Sem. Leningrad.

Otdel. Mat. Inst. Steklov. (LOMI) 104 (1981), 84--92, 236--237.

[40]

Molotkov, I. A.; Vakulenko, S. A. Nonlinear longitudinal waves in

inhomogeneous rods. (Russian) Interference waves in layered media,

I. Zap. Nauchn. Sem. Leningrad. Otdel.

Mat. Inst. Steklov. (LOMI) 99 (1980), 64--73, 158.

[41] Vakulenko, S. A.

The effect of perturbation on solutions of some nonlinear equations.

(Russian) Mathematical questions in the theory of wave propagation, 10.

Zap. Nauchn.

Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 89 (1979), 91--96,

292--293.

[42] Vakulenko, S. A. The solutions of nonlinear equations

concentrated near curves on a plane. (Russian)

Mathematical questions in the theory of wave propagation, 10. Zap.

Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 89 (1979),

84--90, 292.

[43] Bogdanov, A. V.; Vakulenko, S. A.; Strel'chenya,

V. M. Propagation of perturbations in nonlinear media with dispersion and

dissipation. (Russian) Chisl. Metody Mekh.

Sploshn. Sredy 11 (1980), no. 3, Modeli Sredy, 18--26.

[44] Vakulenko, Serge Existence of Ruelle-

Takens transition to chaos for some evolution equations.

C. R. Acad. Sci. Paris S\`er. I Math. 316 (1993), no. 10, 1015--1018.

[45] Vakulenko, S. A.; Maslov, V. P.; Molotkov, I. A.;

Shafarevich, A. I. Asymptotic solutions of the Hartree equation

that are concentrated, as $h\to 0$, in a small neighborhood of a

curve. (Russian) Dokl. Akad. Nauk 345 (1995), no. 6, 743--745.

[46] Vakulenko, Serge Neural networks and

reaction-diffusion systems with prescribed dynamics. C. R. Acad. Sci.

Paris S\'er. I Math. 324 (1997), no. 5, 509--513.

[46b] Vakulenko, Serge Erratum:

"Neural networks and reaction-diffusion systems with prescribed dynamics".

C. R. Acad. Sci. Paris S\'er. I Math. 325 (1997), no. 3, 287.

[47] Vakulenko, S. A. The boundary layer method for nonlinear

parabolic equations. (Russian) Differential equations. Spectral theory.

Wave propagation (Russian), 79--86, 306, Probl.

Mat. Fiz., 13, Leningrad. Univ., Leningrad, 1991.

[48] Vakulenko, S. A.; Molotkov, I. A. Whitham's and Fermat's

principles for the problem of evolution of wave beams in a

nonlinear inhomogeneous medium, Wave

propagation. Scattering theory, 17--26, Amer. Math. Soc. Transl. Ser. 2,

157, Amer. Math. Soc., Providence, RI, 1993.

[49] Vakulenko, S. A.; Molotkov, I. A.

The Whitham principle and the Fermat principle in a problem on the evolution

of wave beams in a nonlinear inhomogeneous medium. (Russian)

Wave propagation. Scattering theory (Russian), 22--32, 256,

Probl. Mat. Fiz., 12, Leningrad. Univ., Leningrad, 1987.

[51] Babich, V. M.; Molotkov, I. A.; Vakulenko, S. A.

Asymptotic approach to some nonlinear wave problems.

Nonlinear deformation waves (Tallinn, 1982), 76--86, Springer,

Berlin-New York, 1983.

[52] Vakulenko, S. A.; Molotkov, I. A.

Waves in a nonlinear inhomogeneous medium that are concentrated in

the vicinity of a given curve. (Russian) Dokl. Akad. Nauk SSSR 262

(1982), no. 3, 587--591.

[53] Vakulenko, S. A. The boundary layer method for nonlinear

parabolic equations. (Russian) Differential equations. Spectral theory.

Wave propagation (Russian), 79--86, 306, Probl.

Mat. Fiz., 13, Leningrad. Univ., Leningrad, 1991.

[54] Vakoulenko, Serge, Complexit\'e dynamique

de reseaux de Hopfield, C. R. Acad. Sci. Paris S\'er.

I Math., T.335, (2002).

[55] S. Vakulenko and D. Grigoriev,

Complexity of patterns generated by genetic

circuits and Pfaffian functions,

Preprint IHES, 2003.

[56] S. Vakulenko and S. Genieys, Pattern programming

by genetic networks, Patterns and Waves,

S. Petersbourg 2003.

[57] V. M. Buren, S. A. Vakulenko,

Model of local cell differentiation in plants,Patterns and Waves,

S. Petersbourg 2003.

[58] Vakulenko S, Grigoriev D.

Complexity of gene circuits, Pfaffian functions and

morphogenesis problem, C. R. Acad. Sci. Paris,

S\'er. I Math., 2003.CRAS2.PS

[59] Vakulenko S, Grigoriev D.,

Stable growth of complex systems, Proceeding of Fifth Workshop

on Simulation, (2005) 705- 709.

[60] S. Vakulenko. B. Kazmierchak, Attractor and Pattern Control

in Nonlinear Media by Localized Defects, 21-th Intern.

Congress of Theor. and Applied Mechanics, Warsaw, 2004,

Book of Extended abstacts p.218, Extended summary on CD-Rom.

[61] E. L. Aero, A. L. Fradkov, S. A. Vakulenko, B. R. Andrievsky,

Dynamic Problems of Nonlinear Oscillations and

Control of complex Crystalline Lattice, Proceedings of the

Third European Conference on Structural Control, V2, Vienna,

Austria, July, 2004.

[62] D. Grigoriev, A. Kazakov, S. Vakulenko, Quantum optical device,

accelerating dynamical programming, preprint.