#2005-10-12355C Horikawa et. al.,_Supplementary References

Supplementary References

S1.Palmeirim, I., Henrique, D., IC, D. & Pourquie, O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell91, 639-48 (1997).

S2.Dale, J. K. et al. Periodic notch inhibition by lunatic fringe underlies the chick segmentation clock. Nature421, 275-8 (2003).

S3.Kosman, D. et al. Multiplex detection of RNA expression in Drosophila embryos. Science305, 846 (2004).

S4.Julich, D. et al. beamter/deltaC and the role of Notch ligands in the zebrafish somite segmentation, hindbrain neurogenesis and hypochord differentiation. Dev Biol286, 391-404 (2005).

S5.Rida, P. C., Le Minh, N. & Jiang, Y. J. A Notch feeling of somite segmentation and beyond. Dev Biol265, 2-22 (2004).

S6.Holley, S. A., Julich, D., Rauch, G. J., Geisler, R. & Nusslein-Volhard, C. her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development129, 1175-83 (2002).

S7.Henry, C. A. et al. Two linked hairy/Enhancer of split-related zebrafish genes, her1 and her7, function together to refine alternating somite boundaries. Development129, 3693-704 (2002).

S8.Oates, A. C. & Ho, R. K. Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish. Development129, 2929-46 (2002).

S9.Bierkamp, C. & Campos-Ortega, J. A. A zebrafish homologue of the Drosophila neurogenic gene Notch and its pattern of transcription during early embryogenesis. Mech Dev43, 87-100 (1993).

S10.Cooke, J. Control of somite number during morphogenesis of a vertebrate, Xenopus laevis. Nature254, 196-9 (1975).

S11.Cooke, J. & Zeeman, E. C. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol58, 455-76 (1976).

S12.Cooke, J. A gene that resuscitates a theory--somitogenesis and a molecular oscillator. Trends Genet14, 85-8 (1998).

S13.Dubrulle, J., McGrew, M. J. & Pourquie, O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell106, 219-32 (2001).

S14.Sawada, A. et al. Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development128, 4873-80 (2001).

S15.Furthauer, M., Reifers, F., Brand, M., Thisse, B. & Thisse, C. sprouty4 acts in vivo as a feedback-induced antagonist of FGF signaling in zebrafish. Development128, 2175-86 (2001).

S16.Lewis, J. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr Biol13, 1398-408 (2003).

S17.Mizuno, T., Shinya, M. & Takeda, H. Cell and tissue transplantation in zebrafish embryos. Methods Mol Biol127, 15-28 (1999).

S18Gajewski, M. et al. Anterior and posterior waves of cyclic her1 gene expression are differentially regulated in the presomitic mesoderm of zebrafish. Development130, 4269-78 (2003).

S19.Kosman, D. et al. Multiplex detection of RNA expression in Drosophila embryos. Science305, 846 (2004).S20.

S20.Geling, A., Steiner, H., Willem, M., Bally-Cuif, L. & Haass, C. A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep3, 688-94 (2002).

- 1 -