17th ICMCF Session Topics

Biology of Fouling Organisms

Chair: Dr Nick Aldred, Research Associate, School of Marine Science & Technology, Newcastle University, UK. [

From single-celled organisms to macroalgae and sessile marine invertebrates, the focus of this session is the biological adaptations of fouling organisms that enable them to locate, select and attach to surfaces, identify or attract conspecific individuals, deter predators or epibionts, resist contemporary antifouling approaches and reproduce/disperse in a manner that exacerbates the fouling challenge. Talks may focus at the individual or the community level to provide insight into potential fouling mitigation strategies.

Fouling as a vector for invasive species

Chair: Dr Eugene Georgiades, Senior Adviser, Biosecurity Risk Analysis (Animals and Aquatic), Science and Risk Assessment Directorate, Ministry for Primary Industries, NZ [

Vessel biofouling represents an important vector for the spread of non-indigenous species. The introduction of some non-indigenous species to new locations can have far-ranging impacts on the marine environment and the people reliant upon it. This session aims to provide scientists, regulators and end users with new information regarding:

• the transport of non-indigenous species via vessel biofouling;

• their associated impacts;

• the risks associated with different types of vessels or hull treatments; and,

• new developments, both regulatory and technical, to address this problem.

Microalgal fouling and adhesion processes

Chair: Professor Jim Callow, Emeritus Professor of Plant Science, School of Biosciences, University of Birmingham, UK. [

This session is concerned with all aspects of fouling and adhesion processes that concern microalgae, or the microalgal fouling stages of macroalgae. Contributions may range from cellular and molecular processes involved in recruitment and adhesion, up to studies on the dynamics of microalgal communities such as those responsible for diatom slimes. Developments in novel coating technologies to control microalgal fouling and the formation of slime layers are also relevant.

Marine Bioadhesion

Chair: Dr Gary Dickinson, Assistant Professor, Dept of Biology, The College of New Jersey, USA. [

Adhesion is a matter of life and death for a wide range of marine organisms. Barnacles, sea weeds, oysters, starfish, mussels, limpets, and tube worms (among others), have evolved remarkable physical and biochemical mechanisms that enable secure attachment in a wet environment. Understanding these mechanisms may foster development of antifouling coatings that interfere specifically with the bioadhesion processes. This session will focus on recent insights on the biochemistry, biology, chemistry, interfacial contacts, and mechanics of marine bioadhesives.

Biofilms and microbial fouling

Chair: Professor Peter Steinberg, Director, Sydney Institute for Marine Sciences; Co-Director, Centre for Marine Bio-innovation, UNSW, Australia; Co-Director, Advanced Environmental Biotechnology Centre, NTU Singapore. [

This session will focus on the ecology, biology and control of microbial communities on marine and aquatic surfaces. Topics will include mechanisms of biofilm formation and development, the use of meta’omics techniques for characterising structure and function of microbial communities and interactions within biofilms. Studies of control mechanisms will include novel approaches to interfering with biofilm formation, structure or dispersal.

Microbiologically influenced corrosion

Chair: Associate Professor Daniel J. Blackwood, Dept of Materials Science & Engineering, National University of Singapore, Singapore. [

This session aims to present recent developments in understanding fundamental mechanisms of microbiologically influenced corrosion (MIC). The session aims to provide an overview of current and future approaches to its detection, prevention, monitoring and control of MIC in marine applications. Of particular interest, approaches that integrate electrochemical, modelling and microbiological investigations to give an in depth understanding of the nature of the biofilm-driven accelerated corrosion processes.

Marine Corrosion - Materials and Coatings

Chair: Dr Dominique Thierry, French Corrosion Institute, Brest, France. [

This session will cover the aspects of corrosion and its prevention for materials in the marine environment. Papers dealing with materials such as carbon steel, stainless steel, copper alloys and aluminium alloys as well as coatings are welcomed. Topics may include corrosion mechanisms, failure analyses, coating systems, case studies, material selection and performance.

Advances in analysis of corrosion

Chair: Professor Hideyuki Kanematsu, Dean, Dept. MS & E., Suzuka National College of Technology, Suzuka, Japan. [

This session will focus on novel evaluation methods and techniques to understand marine corrosion in relation to biofouling. Basic research papers are welcome, as well methods for practical applications.

Risk management in marine corrosion

Chair: Dr Brenda Little, Senior Scientist, Naval Research Laboratory, Stennis Space Center, USA. [

Corrosion risk management in the marine environment is an essential tool for corrosion and materials engineers, requiring prediction, material selection, design, monitoring and mitigation (e.g., coatings and cathodic protection). The session invites papers on tested methodologies and innovative approaches for corrosion risk prediction and management.

Biofouling and Corrosion in the Offshore Oil & Gas Industry

Chair: Mr John A. Lewis, Senior Associate, ES Link Services, Australia. [

Offshore facilities for oil & gas recovery have projected operating lives of up to 30 years, and project designs are increasingly utilising new engineering and technological innovations to increase production efficiency. Predicting biofouling impacts over this timeframe in the offshore realm is difficult. This session calls for papers on the accumulation, distribution and composition of biofouling on offshore rigs, floating storage and processing facilities, subsea pipelines, and other deep water structures, on corrosion and corrosion control for offshore structures, and on coatings and materials for biofouling and material protection to enable facilities to achieve their design life.

Fouling in desalination and seawater cooling systems

Chair: Dr Richard Piola, Defence Scientist, Maritime Division, Defence Science and Technology Organisation, Australia. [

This session will focus on challenges and opportunities concerning technologies for the management of biofouling in desalination and internal sea water cooling systems, including power plants and ships. Many of these systems experience unique biofouling pressures which present challenges for the research and development of effective treatment strategies. This session aims to bring together industry representatives and science and technology professionals to discuss improvements to current treatment methods and development of emergent technologies for effective biofouling treatment outcomes in these highly critical system environments.

Fouling in Aquaculture

Chair: Dr Belinda Yaxley, Petuna Aquaculture Pty Ltd

Biofouling is a serious problem in the aquaculture industry.Fouling organisms compete with cultured stocks for food and space in culture pens, as well as harbour pest and disease vectors. Due to human health concerns, application of antifouling poses challenges for the industry as there is limited scope for use of bioactive substances. This session will focus on challenges in managing biofouling in the aquaculture industry and new antifouling approaches.

Ship Hydrodynamics and Energy Efficiency

Chair: Professor Mehmet Atlar, School of Marine Science and Technology, Newcastle University, UK. [

This session will focus on recent developments in the understanding of the role that marine fouling plays in ship performance and energy efficiency. The session will also explore new ideas for cleaning strategies to complement the IMO’s new GHG emission criteria. Some of the topics covered in the session will include:

  • Surface characterization of different fouling types (especially slime) by using different techniques to be used for predicting their hydrodynamic effects
  • Efficient experimental methods/tools and other approaches (numerical, semi-empirical etc) in quantifying the impact of fouling (especially slime) on frictional drag
  • Determination of hydrodynamic forces on different fouling organisms by using experimental methods/tools and other approaches to predict their fouling release characteristics
  • Estimation of hull/propeller resistance and resulting power increase of ships due to fouling
  • Onboard performance monitoring systems in ships for effective quantification and control of fouling
  • Proactive cleaning strategies to maintain energy efficiency of ships and improve further by new ideas within the framework of IMO’s new regulations for GHG emission of ships (by EEDI, SEEMP, EEOI)

Ship Hull Management

Chair: Professor Geoffrey Swain, Director, Centre for Corrosion and Biofouling Control, Florida Institute of Technology, USA. [

Presentations are invited for research and procedures related to managing the corrosion and biofouling on the outer surfaces of ship hulls, niche areas and running gear. This includes new build, dry dock and in water maintenance. For example: what factors determine coating selection and cathodic protection design, what are the best methods for surface preparation and coating application, what are the recommendations for underwater cleaning and maintenance, how does ship operations and schedule affect hull condition, and what new approaches can improve performance?

Biocidal Antifouling Technologies: From basic research through to end-user perspectives

Chair: Mr David Stark, International Paint Singapore Pte Ltd, Global Marine Coatings Headquarters and Research Center, Singapore. [

Biocidal antifouling technologies remain commercially dominant in many sectors of the industry and continue to be the subject of significant coatings R&D. A key challenge for any biocidal technology is to meet customer requirements with regards to in-service performance and longevity while at the same time minimising the potential for adverse environmental effects. The scope of this session ranges from basic R&D through to end-user industry perspectives on new and emerging biocidal antifouling technologies both in terms of measurable performance and operational challenges.

Advances in Coating Technology

Chair: Professor Dean Webster, Chair, Dept of Coatings and Polymeric Materials, North Dakota State University, USA. [

Coatings are a critical means to prevent biological fouling of ship hulls and other underwater surfaces. This session will focus on novel research and development in marine coatings systems, including new polymer and resin chemistries, new methods for incorporating and releasing additives from coatings, and improvements and new approaches for non-toxic coating systems.

New Approaches for Antifouling

Chair: Professor Robert Lamb, Surface Science & Technology Group, School of Chemistry, The University of Melbourne, Australia. [

This session will cover novel approaches to antifouling. These may includenovel concepts such asnano-roughness, “bio-inspired” surfaces, acoustics, electromagnetic fields, etc.

New methods for evaluation of antifouling

Chair: Professor Axel Rosenhahn, Analytical Chemistry – Biointerfaces, Ruhr-University Bochum. [

This session will focus on new test methodssuch as optical methods that track interactions between the cells/larvae as they approach a surface prior to committing to settlement; techniques to observe and understand settlement and corrosion processes in-situ, assays to quantify settlement / adhesion strength of fouling organisms; methods to assess the performance of coatings under dynamic conditions; methods to predict the long-term performance of fouling-release coatings; design and rapid analysis of long- and short term field tests; etc.

Regulatory and Environmental Issues

Chair: Dr Hannah Flint, Divisional Manager, ANZSPAC, IMarEST, Melbourne, Australia. [

The regulation of antifouling products for commercial vessels and pleasure craft is increasing, as too is the development of biofouling management guidance and requirements at local, regional and global scales to address invasive marine species concerns. This session will cover regulatory initiatives affecting antifouling products, biofouling management and in-water cleaning. Particular focus will be given to the development of tools for the regulatory process, the effectiveness and practicality of implementation, and discussion on some of the related environmental issues currently under debate.