AppendixS1.Examples of Allopatric Speciation Driven by Glaciation of the Central Southern Alps of New Zealand. Shown are: species and genetic markers used, timing of splits, number of geographic sites sampled, habitat type, and reference. mtDNA rate calibrations used (per Ma since divergence): ††2.1%[1], †2.3%[2], *3.54%[3]. Gene marker abbreviations: CO, mitochondrial cytochrome oxidase; A, mitochondrial ATPase; EF, elongation factor; ND, mitochondrial NADH dehydrogenase; CYB, mitochondrial cytochrome b; 12S, small mitochondrial ribosomal RNA subunit; CR, mitochondrial control region; bfibint, beta-fibrinogen intron; H, histone cluster.

Species / Markers / Dating / Sites / Habitat / Refs
Maoricicada, cicada / COI, COII, A6–8 / 1.54–2.09 Ma / 87 / Scrub/grassland 1600 m / [4]
Brachaspis, grasshopper / COI / 1.97 Ma* / 9 / Subalpine/alpine >1500 m / [5]
Megalapteryx, moa A/D / COIII, ND3–5, CYB, A6–8, 12S / 1.98 Ma / 11 / Subalpine scrub/grassland >900 m / [6]
Kikihia, cicada II / COI, COII, A6–8, EF–1 / 2 Ma / 9 / Scrub/grassland <1500 m / [7]
Xenicus, rock wren / CYB, CR, bfibint7, microsatellites / 2 Ma†† / 21 / Alpine >900 m / [8]
Deinacrida, scree weta / COI / 2.08 Ma* / 18 / Alpine scree 1200–3600 m / [9]
Halticoperla, stonefly / COI, H3 / 2.09 Ma* / 12 / Alpine / [10]
Vesicaperla, flightless stonefly / COI, H3 / 2.2 Ma* / 11 / Alpine / [10]
Paprides, grasshopper / COI, 12S / 2.2–2.85Ma*† / 9 / Subalpine grassland / [11]
Holcoperla, flightless stonefly / COI, H3 / 2.48 Ma* / 18 / Alpine / [10]
Apteryoperla, flightless stonefly / COI, H3 / 2.51 Ma* / 13 / Alpine / [10]
Cristaperla, stonefly / COI, H3 / 2.57 Ma* / 18 / Alpine / [10]
Alpinacris, grasshopper / 12S / 2.6 Ma† / 5 / Subalpine/alpine grassland / [11]

References

1.Weir, J.T. and Schluter, D. (2008) Calibrating the avian molecular clock. Mol. Ecol. 17, 2321-2328

2.Brower, A.V.Z. (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. U.S.A. 91, 6491-6495

3.Papadopoulou, A., et al. (2010) Revisiting the insect mitochondrial molecular clock: the mid-Aegean Trench calibration. Mol. Biol. Evol. 27, 1659-1672

4.Hill, K.B.R., et al. (2009) Surviving glacial ages within the Biotic Gap: phylogeography of the New Zealand cicada Maoricicada campbelli. J. Biogeogr. 36, 675-692

5.Trewick, S.A. (2001) Identity of an endangered grasshopper (Acrididae: Brachaspis): taxonomy, molecules and conservation. Conserv. Genet. 2, 233-243

6.Bunce, M., et al. (2009) The evolutionary history of the extinct ratite moa and New Zealand Neogene paleogeography. Proc. Natl. Acad. Sci. U.S.A. 106, 20646-20651

7.Marshall, D.C., et al. (2008) Steady Plio-Pleistocene diversification and a 2-million-year sympatry threshold in a New Zealand cicada. Mol. Phylogenet. Evol. 48, 1054-1066

8.Weston, K.A. and Robertson, B.C. (2015) Population structure within an alpine archipelago: strong signature of past climate change in the New Zealand rock wren (Xenicus gilviventris). Mol. Ecol. 24, 4778-4794

9.Trewick, S.A., et al. (2000) Phylogeographical pattern correlates with Pliocene mountain building in the alpine scree weta (Orthoptera, Anostostomatidae). Mol. Ecol. 9, 657-666

10.McCulloch, G.A., et al. (2010) Onset of glaciation drove simultaneous vicariant isolation of alpine insects in New Zealand. Evolution 64, 2033-2043

11.Trewick, S.A. and Wallis, G.P. (2001) Bridging the "beech-gap": New Zealand invertebrate phylogeography implicates Pleistocene glaciation and Pliocene isolation. Evolution 55, 2170-2180

1