WherearetheCookies?
Grades4-‐6
MathematicsFormativeAssessmentLesson
DesignedandrevisedbyKentuckyDepartmentofEducationMathematicsSpecialistsField-‐testedbyKentuckyMathematicsLeadershipNetworkTeachers
Ifyouencountererrorsorotherissues,pleasecontacttheKDEteamat:
CreatedforthesolepurposeofassistingteachersastheydevelopstudentunderstandingofKentucky’sCoreAcademicStandardthroughtheuseofhighlyeffectiveteachingandlearning.
Notintendedforsale.
WherearetheCookies?–Grades4-6
Mathematicalgoals
Thislessonisintendedtohelpyouassesshowwellstudentsareabletousefractionsinaproblemsolvingcontext.Inparticularthislessonaimstoidentifyandhelpstudentswithdifficulties:
- Conceptualizingfractionalpartsofdifferentwholes
- Choosinganappropriate,systematicwaytocollectandorganizetodisplaymultiplesteptasks
- Conceptualizingfractionalcomparisonsandfractionalpartsofotherfractions
CommonCoreStateStandards
ThislessoninvolvesarangeofStandardsforMathematicalPractice,withemphasison:
1.Makesenseofproblemsandpersevereinsolvingthem.
4.Modelwithmathematics.
7.Lookforandmakeuseofstructure.
ThislessoninvolvesStandardsforMathematicalContentinthestandardsfromacrossthegrades,withemphasison:
4.NFBuildfractionsfromunitfractionsbyapplyingandextendingpreviousunderstandingsofoperationsonwholenumbers.
5.NFApplyandextendpreviousunderstandingsofmultiplicationanddivisiontomultiplyanddividefractions.6.NSApplyandextendpreviousunderstandingsofmultiplicationanddivision.
Thislessonunitisstructuredinthefollowingway:
•Beforethelesson,studentsattemptthetaskindividually.Youthenreviewtheirworkandformulatequestionsforstudentstoanswerinorderforthemtoimprovetheirwork.
•Studentsusewhiteboardstoreviewfractiontasksimilartocookietask.
•Inthelessontheyworkcollaboratively,insmallgroups,tocritiqueexamplesofotherstudents’work.
•Inawhole-classdiscussion,studentsexplainandcomparethealternativeapproachestheyhaveseenandused.
•Finally,studentsworkaloneagaintoimprovetheirindividualsolutions.
Materialsrequired
•EachindividualstudentwillneedtwocopiesofthehandoutWherearetheCookies?
•Eachstudentneedsawhiteboarddryerasemarkerfortheshortintrolesson.
•EachsmallgroupofstudentswillneeddacopyofSampleResponsestoDiscussandwhicheversamplesofstudentworkchosen.
Timeneeded
Approximatelyfifteenminutesbeforethelesson,aone-hourlesson,andtenminutesinafollow-uplesson.Alltimingsareapproximate.Exacttimingswilldependontheneedsoftheclass.
Beforethelesson
Assessmenttask:
Havethestudentsdothistaskinclassadayormorebeforetheformativeassessmentlesson.Thiswillgiveyouanopportunitytoassesstheworkandtofindoutthekindsofdifficultiesstudentshavewithit.Thenyouwillbeabletotargetyourhelpmoreeffectivelyinthefollow-uplesson.
GiveeachstudentacopyofWherearethecookies?Introducethetaskbrieflyandhelptheclasstounderstandtheproblemanditscontext. Pg.1
Spendfifteenminutesonyourown,answeringthequestion.Showyourwork.Don’tworryifyoucan’tfigureitout.Therewillbealessononthismaterial[tomorrow]thatwillhelpyouimproveyourwork.
Yourgoalistobeabletoanswerthisquestionwithconfidencebytheendofthatlesson.
Itisimportantthatstudentsanswerthequestionwithoutassistance,asfaraspossible.Studentswhosittogetheroftenproducesimilaranswers,andthen,whentheycometocomparetheirwork,theyhavelittletodiscuss.Forthisreason,wesuggestthatwhenstudentsdothetaskindividually.
Assessingstudents’responses
Collectstudents’responsestothetask.Makesomenotesonwhattheirworkrevealsabouttheircurrentlevelsofunderstanding,andtheirdifferentproblemsolvingapproaches. Wesuggestthatyoudonot scorestudents’work.Theresearchshowsthatthiswillbecounterproductive,asitwillencouragestudentstocomparetheirscores,andwilldistracttheirattentionfromwhattheycandotoimprovetheirmathematics. Instead,helpstudentstomakefurtherprogressbysummarizingtheirdifficultiesasaseriesofquestions.
Somesuggestionsforfeedbackquestionsbasedoncommonmisconceptionsaregiveninthechartbelow.Wesuggestthatyouwritealistofyourownquestions,basedonyourstudents’work,usingtheideasthatfollow.Youmaychoosetowritequestionsoneachstudent’swork.Ifyoudonothavetimetodothis,selectafewquestionsthatwillbeofhelpthemajorityofstudents.Thesecanbewrittenontheboardattheendofthelesson.
CommonIssues / SuggestedquestionsandpromptsStudentwhohastroublegettingstarted. / •Howmightyouworkbackwardstobeginthistask?
Studentdoesnotadjustforanewwholewhendeterminingthenewamounteaten. / •Howcanyoumakesureyouareonlygettingafractionofwhatisleftandnottheoriginalamountofcookies?
Studentconfusesamounteatenwithamountleft. / •If1/3areeatenwhatfractionareleft?
Studentworkisunsystematic. / •Whatisthesameandwhatisdifferentaftereachpersoneatssomecookies?
•Howcanyouorganizeyourwork?
Studentusesthewrongfractionoperations. / •Inthisproblemarewemultiplyingoradding,dividingorsubtracting?Howdoyouknow?
Studentwritesanswerwithoutexplanation. / •Howcouldyouexplain/showhowyoureachedyourconclusionssothatsomeoneinanotherclassunderstands?
•Howcanyouusenumbers,words,ordiagramstodescribehowthecookieswereeaten?
Studentcorrectlyidentifieswhenthenumberofcookiesthatstartedonthetray. / •Thinkofanotherwayofsolvingtheproblem.Isthismethodbetterorworsethanyouroriginalone? Explainyouranswer.
•Canyoumakeanewproblemwithadifferentnumberofcookiesleft?
Suggestedlessonoutline
Pg.2
IntroductoryLesson(10minutes)
Usingwhiteboards,havestudentsrespondtothefollowing:
Sallyhas3applesandeats½ofthem. Jimeats1/3ofwhatSallyhadleft.Howmuchoftheapplesarenowleft?
Havestudentsshareresponsestothistaskandexplaintheirpicturesornumbersintheirsolutions.Sampleresponse: Sallyate1½oftheapples,sothere1½leftwhenshewasfinished.Jimate1/3ofthe1½thatwereleft sotherewere2 1/2sor1wholeappleleftwhenhewasfinished.
Collaborativeactivity:(20minutes)
Returnthestudents’workontheWherearetheCookies?problem.Askstudentstore-readboththeWherearetheCookies?problemandtheirsolutions.Havestudentssharetheirworkwithapartner,andhaveeachpersonaskanyclarifyingquestionstounderstandtheirpartner’sapproachtothetask.
MakeanoteofstudentapproachestothetaskGiveeachsmallgroupofstudentsacopyoftheSampleResponsestoDiscusshandout.Choosethesamplesofstudentworkthatmatchyourstudents’levelofunderstanding. Beginwithacoupleofincorrectorincompleteworksamples(Robin,Britney,CharlieDawn)andacoupleofcorrectsamples(Katrina,Jim,EddieAndrew)dependingonthemethodsandmisconceptionsheldbyeachgroup. ThestudentworksamplebyBrandonusesequationsandshouldbeusedasanextensiononlyforgroupswhounderstandtheothersamplesfirst.
Displaythefollowingquestionsusingtheprovidedsheet:SampleResponsestoDiscuss.
Describetheproblemsolvingapproachthestudentused.Forexample,youmight:
•Describethewaythestudenthasorganizedthesolution.
•Describewhatthestudentdidtocalculatethenumberofcookiesstartingonthetray.Explainwhatthestudentneedstodotocompleteorcorrecthisorhersolution.
Thisanalysistaskwillgivestudentsanopportunitytoevaluateavarietyofalternativeapproachestothetask.Duringsmall-groupwork,supportstudentthinkingasbefore.Also,checktoseewhichoftheexplanationsstudentsfindmoredifficulttounderstand.Identifyoneortwooftheseapproachestodiscussintheplenarydiscussion.Notesimilaritiesanddifferencesbetweenthesampleapproaches.
Plenarywhole-‐classdiscussioncomparingdifferentapproaches(20minutes)
Organizeawhole-classdiscussiontoconsiderdifferentapproachestothetask.Theintentionisforyoutofocusongettingstudentstounderstandthemethodsofworkingouttheanswers,ratherthaneithernumericalorpictorialsolutions.Focusyourdiscussiononthetasksstudentsfounddifficult.
Let’sstopandtalkaboutdifferentapproaches.
Askthestudentstocomparethedifferentsolutionmethods.Beginwiththemostpictorialandworkthroughtothemoreabstractapproaches–makeconnectionsbetweenapproachesthroughoutthediscussion.Questionsyoumightposetostudentsduringthediscussion:
Whichapproachdidyoulikebestofthestudentworkyouanalyzed?Why?Whichapproachdidyoufinditmostdifficulttounderstand?
Readthroughyouroriginalresponsesandthinkaboutwhatyouhavelearnedthislesson.Didanyoneuseadifferentmethodthanthesamplesofstudentworkyouanalyzed?
Improvingindividualsolutionstotheassessmenttask(10minutes)
Ifyouarerunningoutoftime,youcouldschedulethisactivitytostartthenextday.
Pg.3
MakesurestudentshavetheiroriginalindividualworkontheWherearethecookies?taskonhand.Givethemafresh,blankcopyoftheWherearethecookies? tasksheet.
Ifastudentissatisfiedwithhisorhersolution,askthestudenttotryadifferentapproachtotheproblemandtocomparetheapproachalreadyused.
SolutionDiscussionofStudentworksamples
Thesolutiontothetaskis24cookiesstartedonthetray. Studentscouldworkbackwardstosolvethetaskusingnumbersand/orpicturesbuttheyhavetokeeptrackoftheamounteatenandtheamountleftaftereachpersoneatssomeofthecookies. Itispossibleastudentmightjustguesschecktokeeptryingnumberstobeginonthetrayandworkthroughthefractionsuntiltheyfindananswerthatresultsin6remainingcookies. Usingmultiplicationoffractionsorequationsaremoresophisticatedmethods,butarenotrequiredtosolvethistask. Theyarehowever,efficientapproachesthatsomestudentswillbereadytoinvestigate.
ThemethodsusedbyKatrina,Dawn,Jim,Eddie,AndrewBrandonallleadtothecorrectsolution.However,Dawn’sworkisincompletebecauseitdoesnotgivethefinalanswerof24.Dawn’spictorialmodelusesthetrayastheonewholeandsubtractsamountswhileatthesametimeshowingthefractionalpartsofthewhole.Intheendtherewouldbe12equalsizesectionsand2cookiescouldfitineachsotheapproachcouldleadtocorrectsolution,itisjustincomplete. KatrinaJimusesimilarpictorialmethodsbyactuallydrawingoutcookiesbyworkingbackwards. Eddieusesabarmodeltoworkbackwards. AndrewusesfractionmultiplicationandBrandonsolveswithequations.
Robin,BritneyCharliealluseincorrectmethods. Robinattemptstousepictures,Britneyusesdivision
Charlieconfusestheamounteatenwiththeamountleft.
Mrs.Jamesleftatrayofcookiesonthecounterearlyonemorning.Larrywalkedbybeforelunchanddecidedtotake1/3ofthecookiesonthetray.LaterthatafternoonBarrycameinandate1/4oftheremainingcookies.
AftersupperTerrysawthetrayofcookiesandate1/2ofthecookiesremainingatthattime. ThenextmorningMrs.Jamesfoundthetraywithonly6cookiesleft. HowmanycookieswereonthetraywhenMrs.Jamesfirstleftitonthecounter?
SampleResponsestoDiscuss
HereissomeworkonWherearetheCookies?fromstudentsinanotherclass.Foreachpieceofwork:
1.Writethenameofthestudentwhosesolutionyouareanalyzing.
2.Describetheproblemsolvingapproachthestudentused.Forexample,youmight:
•Describethewaythestudenthasorganizedthesolution.
•Describewhatthestudentdidtocalculatethenumberofcookiesthatstartedonthetray.
3.Explainwhatthestudentneedstodotocompleteorcorrecthisorhersolution.
’s_Solution
’s_Solution
’s_Solution
Katrina’sSolution
Dawn’sSolution
Robin’sSolution
Britney’sSolution
Charlie’sSolution
Jim’sSolution
Eddie’sSolution
Andrew’sSolution
Brandon’sSolution