This Study Examined the Effects the San Onofre Power Plant Had on the Vertical Growth Of

This Study Examined the Effects the San Onofre Power Plant Had on the Vertical Growth Of

The Effect of the San Onofre Nuclear Power Plant on the Growth of Intertidal Organisms.(No dot.)

Greg Clarke and Kamen Tagalicod

Department of Biological Sciences

Saddleback College

Mission Viejo, California 92692

This study examined the effectsof the San Onofre Power Planthad(No had) on the vertical growth of intertidal organisms. It was hypothesized that the vertical growth of organismsin San Onofrewould be significantly smaller closernegligible and close to San Onofre than in Laguna Beach. The t-test(what type of t-test?) forthe two means showed a significant difference between the vertical growth of organisms at the two different tide pool locations (P=2.26x 10-2±S.E.M). When the measurements were taken from the two tide pools, a significant difference in growth was revealed, thus supporting the proposed hypothesis.

Intro(Introduction)

The San Onofre power plant is a nuclear generating plant that is located in northern San Diego County. The power plant provides about 20% of all electrical power to the residents of Southern California. But what is itit doing to the surrounding effects the aquatic wildlife, and to the intertidal organisms in the surrounding pools.These organisms would consist of Lithothrix(Red Algae), Ulva (Green Algae), Egregia (Brown Algae), Littorina planaxis (Perriwinkle), Tegula funebralis, (Turban Snail), Strongylocentrotus franciscanus (Sea Urchin), Anthopleura (Sea Anemone), and the Mytilus (Mussel).With the San Onofre Nuclear Power Plant the vertical growth of these organisms may be suffer due to radioactive waste, or other runoff in the water from the power plant. “There are two general approaches to the treatment of radioactive waste materials… The second approach involves the principles of dilution and dispersion. Here the purpose is to so dilute the wastes in man’s environment that the radioactivity which could be returned to man would be negligible compared to the natural background to which he has always been exposed” (Brown and Richard, 1961). The practice of dumping wastes and CO2 has become a popular way of disposal for many factories and power plants. Auerbach (1997) found that the point of dumping of these wastes has a severe impact on the local marine wildlife. Watson (1992) showed that density of larval Pacific Sardine, (Suvdinops sugux)in San Onofre was 20% less near San Onofrelesserthan at Stuart Mesa. Disposing of waste into the ocean may be safe for man, but not for the wildlife. “…it is quite likely that the sea will be the safest place to dispose of certain radioactive waste materials…” (Brown, and Prichard 1961). Brown and Prichard (1961) also found that nuclear waste and other hazardous materials are inevitable to reach the ocean. Whether it is through sewers, rivers, or through big factories, the surrounding wildlife in the tide pools could be effectedaffected, and therefore stop their growth.

Materials and Methods

November 03, 2009,On the third day of November 2009two studentsresearchers traveled to Laguna Beach, CA, to perform a vertical zonation of organisms living in the intertidal marine environment. The procedure was performed at approximately 3:30 pm by reason of the tide being at its lowest point. Two 100 meter transect tapes and two 0.25 m2quadratsquadrantswere loaned to the students the day prior. Using the transect tape, students started at the high tide zone (splash zone) and measured out toward the lower intertidal zone. The tapes measured from 0 to 45 meters. 0.25 m2 quadrats were used every 5 meters along the transect tape for a total of 10 transect points (0, 5, 10, 15, 20, 25, 30, 35, 40, and 45 meters). Green Algae (Ulva), Red Algae (Lithothrix), Brown Algae (Egregia), Periwinkle snails (Littorina planaxis), Turban snails (Tegula funebralis), Mussels (Mytilus), Sea Anemones (Anthopleura) and Sea Urchins (Strongylocentrotus) were the 8 organisms observed. The sum of each organism was calculated in each of the 10 quadrats and recorded in athelab notebook. This procedure was performed three times on this day at the Laguna Beach Location.

On November 13th students traveled to San Onofre California to perform the same procedure with intentions of a significant difference in the distribution of organisms. The tide pool surveyed was approximately 1 mile from the Nuclear Power Plant itself. At the San Onofre location the following intertidal organisms did not exist: Periwinkle snails, Mussels, and Sea Urchins. A table was constructed in the lab notebook to record the organisms that did exist at this location and the Laguna Beach location (Green Algae, Red Algae, Brown Algae, Turban snails, and Sea Anemones). The quadrats were most often covered in copious amounts of rocks at thisthe San Onofre location in the middle intertidal and high tide zone. Students had to move the rocks to uncover the abundant amount of Turban snails on their underside. On this day of research five transect lines of 45 meters were recorded.

November 18th 2009 students traveled back to the same Laguna Beach location for two more 45 meter transect lines so that it would be an even five in San Onofre and five in LagunaBeach. Data was recorded in a table for these last two runs during a low tide at 4:30 pm. All data from the three research days was transferred into Microsoft Excel for number crunchingto sketch the graphsand the following equation was used to determine frequency:

Frequency= number of quadrats in which a species occurs ÷(/)total number of quadratsquadrantssampled

Results

There is a significant difference in vertical growth in intertidal organisms between Laguna Beach and San Onofre tide pools. The measures that were taken started off at 0m, and ended at 45m inevery 5 m. increments. As the distance from the splash zone increased, the greater the variety of intertidal species became. Taken from all five runs, the mean of all specimens came out to 152.8, and when all five runs were taken from San Onofre the mean of specimens came out to 17.4. When the two means were put through a one-tailed paired t-test(Huh!!!), it was found that there wasis a significantdifference between the growth of intertidal organisms (P=2.26x 10-2±S.E.M).

(Units needed For X and Y axis!)

Figure 1. Comparing the means of the two beaches the one-tailed unpaired t-test(Huh!!!)shows a significant difference in the growth of intertidal organisms (P=2.26x 10-2±S.E.M). Error bars are set at 95% intervals.

Discussion

In San Onofre, California the nuclear power plant has an effect on the life of organisms living nearby. Low or intermediate-level wastes associated with nuclear-power are dispersed into marine environments as normal operation when deemed by companies as not being a public health risk (Brown et al, 1961). Although nuclear wastes in the ocean may not be considered a health risk to humans it affects its direct inhabitance (intertidal organisms) in a significant way being that they exist within a miles distance of this constant exposure. Laguna Beach contained a more diverse and abundant amount of organisms in its tide pools when compared to the San Onofre location. Distribution ranged from less frequent to non-existent when locations were compared. Pacific sardine larvae (that doesn’t have to do with Laguna beach) living immediately above the sea floor existed less frequently in San Onofre than at Stuart Mesa (Watson 1992). This suggests that there is less abundance in organisms when being geographically closer to the power plant. Radiation in the water could be the cause of this phenomenon as it can effect marine life in negative ways.

In the study one possible inconsistency arose with the Turban snail (Tegula funebralis). In LagunaBeach the Turban snail appeared less frequently than in the San Onofre location suggesting that the power plant has no negative effect on this organism. The turban snail was the only organism with this occurrence. Perhaps it has the ability to exist in more extreme conditions unlike the periwinkle snail (Littorina planaxis) which was non-existent in that location.

In the future students would like to do a bacteriological examination of the water in the two locations to see how different they are. Testing for temperature and salinity of the water could also tell us more about how organism growth is affected in the two areas and if it is a result of the power plant exposure.

Acknowledgements

A special thanks to Professor Teh for the help and support for this project, and to the Department of Biology at Saddleback College for providing the tools necessary for the completion of the project.

Literature Cited(wrong format used)

Auerbach, David I, Jennifer Caulfield, Eric Adams, Howard Herzog 1997. Impacts of

Ocean CO2 Disposal on Marine Life. Enviornmental Modeling and Assessment 2.

333-343. Web. 18 Sept. 2009.

Boroughs, Howard, Sidney J. Townsley, and Robert W. Hiatt. The Uptake, Accumulation, and Loss of Strontium by Fishes. The Metabolism of Radionuclides

by Marine Organisms. 82: 336-351. Web. 5 Sept. 2009.

Brown, Robert M., and Donald W. Pritchard. 1961. Radioactive Wastes in the Marine

Enviornment. Am J Public Health Nations Health 51.11: 1647-1661.

Web. 5 Sept. 2009.

Ebert, Thomas A. 1968. Growth Rates of the Sea Urchin Strongylocentrotus purpuratus
Related to food avaibility and spine abrasion. Ecology 47.6:
1075-1091. Web. 4 Sept. 2009.

Watson, William. (1992). Distribution of Larval Pacific Sardine, Sardinops sagax, in
Shallow Costal Waters between Oceanside and San Onofre, California.
Pacific Sardine Larvae Near Shore CalCOFI Rep. 33: 88-99. Web. 4
Sept. 2009.

check your literature citations!!

Sample:

Baumel, J. J. 1988. Functional morphology of the tail apparatus of the pigeon (Columbalivia). Adv. Anat. Embry. Cell Biol. 110:1–115.

Review Form

Department of Biological Sciences

Saddleback College, Mission Viejo, CA 92692

Author (s):__Clarke and Tagalicod______

Title: The effect of the San Onofre Nuclear power on the rowth of intertidal organisms

Summary

Summarize the paper succinctly and dispassionately. Do not criticize here, just show that you understood the paper.

This study examined the effects of San Onofre Power Plant on the vertical growth of intertidal organisms. They hypothesized that the vertical growth of organisms would be significantly smaller to San Onofre than in Laguna Beach. They used a T-test, which showed a significant difference between the vertical growths of organisms at the two different tide pool locations.Therefore they supported their hypothesis.

General Comments

Generally explain the paper’s strengths and weaknesses and whether they are serious, or important to our current state of knowledge.

  • Paper is not justified.
  • The font is not the right font
  • Not enough literature cited
  • Look at more comments on the paper

Technical Criticism

Review technical issues, organization and clarity. Provide a table of typographical errors, grammatical errors, and minor textual problems. It's not the reviewer's job to copy Edit the paper, mark the manuscript.

This paper was a final versionThis paper was a rough draft