HAEF IB - MATH SL
TEST 6 – (Paper 1: Without GDC)
Trigonometry
by Christos Nikolaidis
Name:______
Date: 31 – 3 – 2016
Questions
1. [Maximum mark: 8]
Given that sinA=0.6, where 90°≤A≤180°, find the following values in two decimal places.
(a) cosA [3 marks]
(b) tanA [2 marks]
(c) cos2A [3 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
2. [Maximum mark: 8]
Solve the following equations. The solutions must be given in terms of π.
(a) 2sin2x-3sinx=-1, 0≤x≤3π [6 marks]
(b) 2cos2x+3sinx=3, 0≤x≤3π [2 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
3. [Maximum mark: 10]
Solve the following equations. The solutions must be given in terms of π.
(c) sin2x=3cosx, -π≤x≤π [6 marks]
(d) 3sinx=cosx, 0≤x≤2π [4marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
4. [Maximum mark: 7]
Let
A=cosx+sinx
B=cosx-sinx
(a) Express A2 in the form asin2x+b [3 marks]
(b) Express AB in form acosbx [2 marks]
(c) Given that A2+B2=c, find the value of the integer c. [2 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
5. [Maximum mark: 12]
Consider the graph of the function fx=asin(bx)+c
It has a maximum at A(1,14) and a minimum at B(3,4)
(a) Write down the range of the function [1 mark]
(b) Write down the y-intercept of the function [1 mark]
(c) Find the period of the function [2 marks]
(d) Find the values of a, b and c. [4 marks]
(e) Express the function in the form fx=acos(bx-d)+c,
(i) given that a is positive. [2 marks]
(ii) given that a is negative. [2 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
Page 6
HAEF IB - MATH SL
TEST 6 – (Paper 2: With GDC)
Trigonometry
by Christos Nikolaidis
Name:______
Date: 31 – 3 – 2016
Questions
1. [Maximum mark: 5]
Find the values of x in the following cases
(a) sinx=0.3, 0≤x≤3π (in radians) [2 marks]
(b) cosx=0.3, -180°≤x≤360° (in degrees) [3 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
2. [Maximum mark: 5]
In the triangle ABC, A = 30°, B =50° and AB = 5. Find the length of BC.
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
3. [Maximum mark: 6]
Consider the function
fx=sin2x-cos3x
(a) By observing its graph in your GDC, find the range and the period of f [4 marks]
(b) Solve the equation
sin2x=cos3x, 0≤x≤3π [2 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
4. [Maximum mark: 5]
Consider the following diagram.
[5 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
5. [Maximum mark: 9]
The diagram shows a circle of centre O and radius r=5. Let AOB = θ radians.
(a) Given that θ is 120°, find
(i) the length of the minor arc ACB, [2 marks]
(ii) the area of the minor sector OACB [2 marks]
(iii) the area of the shaded region [3 marks]
(b) Find the value of θ , given that the area of the shaded region is 12. [2 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
6. [Maximum mark: 15]
Let ,
(a) Sketch the graph of in the space below. Indicate the coordinates
of the y-intercept and of the maximum points.
[4 marks]
(b) Complete the following table for f.
Period / Range[4 marks]
(b) This function can be expressed in the form
,
where are positive real numbers. Complete the following table for f.
a / b / c / d[5 marks]
(c) This function can also be expressed in the form
,
where are as above. Find a possible value of d.
d[2 marks]
Page 6