Table S1A: Activation Patterns of TCR Components in Human Mature T-Cell Tumors

Table S1A: Activation Patterns of TCR Components in Human Mature T-Cell Tumors

Supplemental Data:

Table S1A: Activation patterns of TCR components in human mature T-cell tumors

Category / Variably
p-LCK/SYK/ZAP70 positive / Uniformly
p-LCK/SYK/ZAP70 positive / Absent
p-LCK/SYK/ZAP70 expression
CTCL / 21/29 (72%) / 5/29 (17%) / 3/29 (10%)
pAKT+ / (71%) / (80%) / (67%)*
PTCL / 15/73 (21%) / 32/73 (44%) / 26/73 (36%)
pAKT+ / (87%) / (100%) / (15%)
ALCL / 20/56 (36%) / 4/56 (7%) / 32/56 (57%)
pAKT+ / (63%) / (100%) / (28%)

* low absolute numbers in this category (2 of only 3 cases)

Protocols and detailed results of our extensive immunostaining for TCR components and TCR kinases on various PTCL/L are outlined in References [1–3]. This updated Table summarizes the data on 158 cases of the most sizable subsets, namely cutaneous T-cell lymphoma (CTCL; n=29), nodal and extranodal peripheral T-cell lymphoma of other types (PTCL; n=73), and anaplastic large cell lymphoma (ALCL; n=56). Expression and phosphorylation state of LCK, ZAP70, and SYK as well as expression of p(S473)AKT, CD3, and TCRβ were evaluated semi-quantitatively on a 3-tier system (negative, weak or partial expression, strongly expressed) in all identifiable (morphologically and by parallel CD3 stains) tumor cells.

1.Admirand J, Herling M, Patel K, et al. T-cell receptor signaling and growth pathways in T-cell tumors. Mod Pathol. 2005;18:220A.

2.Admirand J, Rassidakis G, Medeiros L, Jones D. CD3-independent activation of downstream effectors ZAP-70 and SYK in T-cell lymphomas. Lab Invest. 2004;84:237A.

3.Admirand JH, Rassidakis GZ, Abruzzo L V, et al. Immunohistochemical detection of ZAP-70 in 341 cases of non-Hodgkin and Hodgkin lymphoma. Mod Pathol. 2004;17(8):954–61.

Document S1: Protocol of the in-silico integrative analysis of gene expression data sets on human PTCL/L performed in this review

Out of 38 reports [1-38] on array-based mRNA expression profiling of PTCL/L tumor samples and normal T cells we identified 10 batches with available primary data sets from standardized oligonucleotide arrays from which 9 were integrated (6 on Affymetrix HG-U133 Plus 2.0, 2 on older U133A and 1 on U133A_2)[1-8,10]. One data set [9] was excluded as it strongly differed from all other datasets. This can at least in part be explained by the unique mode of sample extraction by single-cell micro-dissection applied there in contrast to all other studies. All data sets were separately background-corrected and pre-annotated using the BioConductor package „affy“ in R. Replicates were combined by mean. Data sets were quantile-normalized and the genes re-annotated via Ensembl ID using „biomaRt“. The resulting ambiguous probe sets assigned to a gene were also integrated by calculating their mean. The 48 selected marker genes for the clustering are listed in Table S2 (below). They were retrieved from the annotated datasets. A pool of these expression values from all data sets was then again quantile-normalized to account for variability in platform specifications and noise instead of working on gene overlap because of different probe sets (and their number or unavailability for certain genes). Together, this results in an approximate mRNA expression profile across multiple studies on a large number of PTCL/L. It provides the advantage to be able to compare and integrate individual studies / platforms without the need for control samples (normal T-cells) in each of these batches / experiments.

Abbreviations:

AB HSTL, Alpha-beta hepatosplenic T-cell lymphoma;

AITL, Angioimmunoblastic T-cell lymphoma;

ALCL-ALK-, Anaplastic large-cell lymphoma ALK negative;

ALCL- ALK+, Anaplastic large-cell lymphoma ALK positive;

ATLL, Adult T-cell lymphoma;

cALCL, primary cutaneous anaplastic large cell lymphoma;

CTCL, Cutaneous T-cell lymphoma;

DR, HLA-DR, human leukocyte antigen receptor;

EATL, Enteropathy-associated T-cell lymphoma;

GD HSTL, Gamma-delta hepatosplenic T-cell lymphoma;

LN, sort-isolated from lymph nodes;

MF, Mycosis fungoides;

PTCL-nos, Peripheral T-cell lymphoma not otherwise specified;

PB, sort-isolated from peripheral blood;

Tons., sort-isolated from tonsils;

T-PLL inv, T-cell prolymphocytic leukemia with inv(14) or t(14;14);

T-PLL no inv, T-cell-prolymphocytic leukemia without inv(14) or t(14;14);

References

1. Iqbal J, Weisenburger DD, Greiner TC, Vose JM, McKeithan T, Kucuk C, et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood. 2010;115(5):1026–36.

2. Piccaluga PP, Agostinelli C, Califano A, Rossi M, Basso K, Zupo S, et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest. 2007;117(3):823–34.

3. Iqbal J, Weisenburger DD, Chowdhury A, Tsai MY, Srivastava G, Greiner TC, et al. Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic γδ T-cell lymphoma and is highly sensitive to a novel aurora kinase A inhibitor in vitro. Leukemia. 2011 Feb;25(2):348–58.

4. Van Doorn R, Van Kester MS, Dijkman R, Vermeer MH, Mulder AA, Szuhai K, et al. Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary syndrome. Blood. 2009;113(1):127–36.

5. Travert M, Huang Y, De Leval L, Martin-Garcia N, Delfau-Larue M-H, Berger F, et al. Molecular features of hepatosplenic T-cell lymphoma unravels potential novel therapeutic targets. Blood. 2012 Jun 14;119(24):5795–806.

6. De Leval L, Rickman DS, Thielen C, Reynies A de, Huang Y-L, Delsol G, et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood. 2007 Jun 1;109(11):4952–63.

7. Dürig J, Bug S, Klein-Hitpass L, Boes T, Jöns T, Martin-Subero JI, et al. Combined single nucleotide polymorphism-based genomic mapping and global gene expression profiling identifies novel chromosomal imbalances, mechanisms and candidate genes important in the pathogenesis of T-cell prolymphocytic leukemia with inv(14)(q11q32). Leukemia. 2007 Oct;21(10):2153–63.

8. Shin J, Monti S, Aires DJ, Duvic M, Golub T, Jones DA, et al. Lesional gene expression profiling in cutaneous T-cell lymphoma reveals natural clusters associated with disease outcome. Blood. 2007 Oct 15;110(8):3015–27.

9. Eckerle S, Brune V, Döring C, Tiacci E, Bohle V, Sundström C, et al. Gene expression profiling of isolated tumour cells from anaplastic large cell lymphomas: insights into its cellular origin, pathogenesis and relation to Hodgkin lymphoma. Leukemia. 2009 Nov;23(11):2129–38.

10. Lamant L, De Reyniès A, Duplantier M-M, Rickman DS, Sabourdy F, Giuriato S, et al. Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood. 2007 Mar 1;109(5):2156–64.

11. Agostinelli C, Piccaluga PP, Went P, Rossi M, Gazzola A, Righi S, et al. Peripheral T cell lymphoma, not otherwise specified: the stuff of genes, dreams and therapies. J Clin Pathol. 2008;61(11):1160–7.

12. Cai Q, Deng H, Xie D, Lin T, Lin T. Phosphorylated AKT protein is overexpressed in human peripheral T-cell lymphomas and predicts decreased patient survival. Clin Lymphoma Myeloma Leuk. 2012 Apr;12(2):106–12.

13. Piva R, Agnelli L, Pellegrino E, Todoerti K, Grosso V, Tamagno I, et al. Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J Clin Oncol. 2010 Mar 20;28(9):1583–90.

14. Costello R, Sanchez C, Le Treut T, Rihet P, Imbert J, Sébahoun G. Peripheral T-cell lymphoma gene expression profiling and potential therapeutic exploitations. Br J Haematol. 2010 Jul;150(1):21–7.

15. Martinez-Delgado B. Peripheral T-cell lymphoma gene expression profiles. Hematol Oncol. 2006 Sep;24(3):113–9.

16. Murakami T, Ohtsuki M, Nakagawa H. Angioimmunoblastic lymphadenopathy-type peripheral T-cell lymphoma with cutaneous infiltration: report of a case and its gene expression profile. Br J Dermatol. 2001 Apr;144(4):878–84.

17. Foss HD, Anagnostopoulos I, Herbst H, Grebe M, Ziemann K, Hummel M, et al. Patterns of cytokine gene expression in peripheral T-cell lymphoma of angioimmunoblastic lymphadenopathy type. Blood. 1995 May 15;85(10):2862–9.

18. Bug S, Dürig J, Oyen F, Klein-Hitpass L, Martin-Subero JI, Harder L, et al. Recurrent loss, but lack of mutations, of the SMARCB1 tumor suppressor gene in T-cell prolymphocytic leukemia with TCL1A-TCRAD juxtaposition. Cancer Genet Cytogenet. 2009 Jul;192(1):44–7.

19. Nowak D, Le Toriellec E, Stern MH, Kawamata N, Akagi T, Dyer MJ, et al. Molecular allelokaryotyping of T-cell prolymphocytic leukemia cells with high density single nucleotide polymorphism arrays identifies novel common genomic lesions and acquired uniparental disomy. Haematologica. 2009;94(4):518–27.

20. Le Toriellec E, Despouy G, Pierron G, Gaye N, Joiner M, Bellanger D, et al. Haploinsufficiency of CDKN1B contributes to leukemogenesis in T-cell prolymphocytic leukemia. Blood. 2008;111(4):2321–8.

21. Brito-Babapulle V, Hamoudi R, Matutes E, Watson S, Kaczmarek P, Maljaie H, et al. p53 allele deletion and protein accumulation occurs in the absence of p53 gene mutation in T-prolymphocytic leukaemia and Sezary syndrome. Br J Haematol. 2000;110(1):180–7.

22. Mossafa H, Brizard A, Huret JL, Brizard F, Lessard M, Guilhot F, et al. Trisomy 8q due to i(8q) or der(8) t(8;8) is a frequent lesion in T-prolymphocytic leukaemia: four new cases and a review of the literature. Br J Haematol. 1994 Apr;86(4):780–5.

23. Maljaei SH, Brito-Babapulle V, Hiorns LR, Catovsky D. Abnormalities of chromosomes 8, 11, 14, and X in T-prolymphocytic leukemia studied by fluorescence in situ hybridization. Cancer Genet Cytogenet. 1998;103(2):110–6.

24. Maljaie SH, Britobabapulle V, Matutes E, Hiorns LR, Deschouwer PJJC, Catovsky D. Expression of C-Myc Oncoprotein in Chronic T-Cell Leukemias. Leukemia. 1995;9(10):1694–9.

25. Campbell JJ, Clark RA, Watanabe R, Kupper TS. Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood. 2010 Aug 5;116(5):767–71.

26. Mahadevan D, Spier C, Della Croce K, Miller S, George B, Riley C, et al. Transcript profiling in peripheral T-cell lymphoma, not otherwise specified, and diffuse large B-cell lymphoma identifies distinct tumor profile signatures. Mol Cancer Ther. 2005 Dec 1;4(12):1867–79.

27. Bellavia D, Campese AF, Checquolo S, Balestri A, Biondi A, Cazzaniga G, et al. Combined expression of pTalpha and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3788–93.

28. Streubel B, Vinatzer U, Willheim M, Raderer M, Chott A. Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia. 2006 Feb;20(2):313–8.

29. Feldman AL, Sun DX, Law ME, Novak AJ, Attygalle AD, Thorland EC, et al. Overexpression of Syk tyrosine kinase in peripheral T-cell lymphomas. Leukemia. 2008;22(6):1139–43.

30. Uner AH, Sağlam A, Han U, Hayran M, Sungur A, Ruacan S. PTEN and p27 expression in mature T-cell and NK-cell neoplasms. Leuk Lymphoma. 2005 Oct;46(10):1463–70.

31. Martinez-Delgado B, Meléndez B, Cuadros M, Alvarez J, Castrillo JM, Ruiz De La Parte A, et al. Expression profiling of T-cell lymphomas differentiates peripheral and lymphoblastic lymphomas and defines survival related genes. Clin Cancer Res. 2004 Aug 1;10(15):4971–82.

32.Ballester B, Ramuz O, Gisselbrecht C, Doucet G, Loï L, Loriod B, et al. Gene expression profiling identifies molecular subgroups among nodal peripheral T-cell lymphomas. Oncogene. 2006 Mar 9;25(10):1560–70.

33. Thompson MA, Stumph J, Henrickson SE, Rosenwald A, Wang Q, Olson S, et al. Differential gene expression in anaplastic lymphoma kinase-positive and anaplastic lymphoma kinase-negative anaplastic large cell lymphomas. Hum Pathol. 2005;36(5):494–504.

34. Cuadros M, Dave SS, Jaffe ES, Honrado E, Milne R, Alves J, et al. Identification of a proliferation signature related to survival in nodal peripheral T-cell lymphomas. J Clin Oncol. 2007 Aug 1;25(22):3321–9.

35. Piccaluga PP, Agostinelli C, Zinzani PL, Baccarani M, Dalla Favera R, Pileri SA. Expression of platelet-derived growth factor receptor alpha in peripheral T-cell lymphoma not otherwise specified. Lancet Oncol. 2005 Jun;6(6):440.

36. Piccaluga PP, Agostinelli C, Righi S, Zinzani PL, Pileri SA. Expression of CD52 in peripheral T-cell lymphoma. Haematologica. 2007 Apr;92(4):566–7.

37. Tracey L, Villuendas R, Dotor AM, Spiteri I, Ortiz P, Garcia JF, et al. Mycosis fungoides shows concurrent deregulation of multiple genes involved in the TNF signaling pathway: an expression profile study. Blood. 2003 Aug 1;102(3):1042–50.

38. Miyazaki K, Yamaguchi M, Imai H, Kobayashi T, Tamaru S, Nishii K, et al. Gene expression profiling of peripheral T-cell lymphoma including gammadelta T-cell lymphoma. Blood. 2009;113(5):1071–4.

Table S2: Genes of the TCR pathway selected for the comprehensive in-silico meta-analysis of gene expression data in PTCL/L

The listed genes (categorized as functional classes) were initially selected based on literature-based implication in (proximal, intermediate, and distal) TCR signaling and its outcome. They were then limited to those that in first runs showed a differential expression across entities of PTCL/L. TCL1A and ALK served as controls for validating the reliability of the spontaneous TCR-based clustering. The clustering algorithms were applied using each functional category of these genes separately and in permutated combinations of each other. A summary of clustering of PTCL/L when including all gene categories at once is presented as a heatmap in Figure 1B of the main manuscript.

Gene Symbol / Ensembl / Description / Chromosome
T-cell receptor complex
TRAC / ENSG00000229164 / TCRα constant / 14
TRBC2 / ENSG00000211772 / TCRβ constant 2 / 7
TRGC1 / ENSG00000211689 / TCRγ constant 1 / 7
TRGC2 / ENSG00000227191 / TCRγ constant 2 / 7
CD4 / ENSG00000010610 / CD4 / 12
CD8A / ENSG00000153563 / CD8 / 2
CD247 / ENSG00000198821 / CD3-zeta / 1
Kinases, Adaptors, Phosphatases
LCK / ENSG00000182866 / lymphocyte-specific protein tyrosine kinase / 1
ZAP70 / ENSG00000115085 / zeta-chain associated protein kinase 70kDa / 2
SYK / ENSG00000165025 / spleen tyrosine kinase / 9
ITK / ENSG00000113263 / IL2-inducible T-cell kinase / 5
MAPK3 / ENSG00000102882 / ERK1 / 16
MAPK1 / ENSG00000100030 / ERK2 / 22
PRKCQ / ENSG00000065675 / PKC-theta / 10
CALM1 / ENSG00000198668 / calmodulin 1 / 14
CALM3 / ENSG00000160014 / calmodulin 3 / 19
PLCG1 / ENSG00000124181 / PLC-gamma 1 / 20
PLCG2 / ENSG00000197943 / PLC-gamma 2 / 16
PTPRC / ENSG00000081237 / CD45 / 1
INPP5D / ENSG00000168918 / SHIP, inositol polyphosphate-5-phosphatase / 2q37.1
INPPL1 / ENSG00000165458 / SHIP2, inositol polyphosphate phosphatase-like 1 / 11q23
PTPN6 / ENSG00000111679 / SHP1, protein tyrosine phosphatase, non-receptor type 6 / 12
VAV1 / ENSG00000141968 / vav 1 guanine nucleotide exchange factor / 19p13.2
LAT / ENSG00000213658 / linker for activation of T cells / 16
GRB2 / ENSG00000177885 / growth factor receptor-bound protein 2 / 17
LCP2 / ENSG00000043462 / Slp76, lymphocyte cytosolic protein 2 / 5
TRAT1 / ENSG00000163519 / TRIM, T cell receptor associated transmembrane adaptor 1 / 3
Distal transcription factors
NFKB1 / ENSG00000109320 / nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 / 4q24
NFAT5 / ENSG00000102908 / nuclear factor of activated T-cells 5, tonicity-responsive / 16q22.1
NFATC1 / ENSG00000131196 / nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 / 18q23
NFATC2 / ENSG00000101096 / nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2 / 20q13.2
NFATC3 / ENSG00000072736 / nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3 / 16q22
General (Proto-) Oncogenes
FYN / ENSG00000010810 / FYN oncogene / 6
AKT1 / ENSG00000142208 / v-akt murine thymoma viral oncogene homolog 1 / 14
RELA / ENSG00000173039 / v-rel reticuloendotheliosis viral oncogene homolog A / 11
HRAS / ENSG00000174775 / v-Ha-ras Harvey rat sarcoma viral oncogene homolog / 11
NRAS / ENSG00000213281 / neuroblastoma RAS viral (v-ras) oncogene homolog / 1
Cytokine/Chemokine Receptors
IL2RA / ENSG00000134460 / interleukin 2 receptor α / 10p15-p14
IL2RB / ENSG00000100385 / interleukin 2 receptor β / 22q13
IL2RG / ENSG00000147168 / interleukin 2 receptor γ / Xq13
IL4R / ENSG00000077238 / interleukin 4 receptor / 16p12.1-p11.2
IL12RB1 / ENSG00000096996 / interleukin 12 receptor β1 / 19p13.1
IL12RB2 / ENSG00000081985 / interleukin 12 receptor β2 / 1p31.3-p31.2
CXCR4 / ENSG00000121966 / chemokine (C-X-C motif) receptor 4 / 2q21
CCR4 / ENSG00000183813 / chemokine (C-C motif) receptor 4 / 3p24-p21.3
CCR5 / ENSG00000160791 / chemokine (C-C motif) receptor 5 / 3p21
Signature Oncogenes
(clustering controls)
TCL1A / ENSG00000100721 / T-cell leukemia/lymphoma 1A / 14
ALK / ENSG00000171094 / anaplastic lymphoma receptor tyrosine kinase / 2p23