Table 1 Known oxidative DNA modifications and their consequences for mutations

DNA modification

/

Mutation (base change)

/

Species/cell line

/

Reference

5-formyluracil / CT
GT
TC
TA
TG / E. coli
E. coli
E. coli
E. coli
E. coli / 1, 2
1, 2
1-4
1-4
2, 5
5-hydroxyuracil / CT / E. coli / 2, 6-8
5,6-dihydrouracil / GA / in vitro transcription / 2, 9
5,6-dihydroxyuracil / 2, 7
5-hydroxy-6-hydrouracil / 2
5-hydroxymethyluracil / CT / E. coli / 2, 7, 10, 11
uracil glycol / CT / E. coli / 2, 6, 8
5-hydroxymethylcytosine / CT / Bacteriophage T4 / 11, 12
5-hydroxycytosine / CT / E. coli / 2, 6-8
5,6-dihydroxycytosine / 2
5-hydroxy-6-hydrocytosine / 2
5-formylcytosine / CT
CA / hypothetical
hypothetical / 8, 13
8, 13
cytosine glycol / 2
8-hydroxyguanine / GT
GC
GA
AC / NIH3T, COS-7
NIH3T, COS-7
NIH3T, COS-7
E. coli / 2, 4, 7, 8, 14, 15
2, 4, 14, 15
14, 15
8, 16
8-hydroxyadenine / AG
AC / COS-7
COS-7 / 2, 14, 17
14, 17
2-hydroxyadenine / AG
AT
AC / E. coli; COS-7
E. coli; COS-7
E. coli / 2, 8, 15
8, 15
8, 15
5-hydroxy-6-hydrothymine / 2
thymine glycol / TC / E. coli / 2, 8, 18
5,6-dihydrothymine / 2
5-hydroxy-5-methylhydantoin / 2, 7
trans-1-carbamoyl-2-oxo-4,5-dihydroxyimidazolidine / 2
5-hydroxyhydantoin / 2, 7
alloxan / 2
4,6-diamino-5-form-amidopyrimidine (FapyA) / 2, 7, 19
2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) / 2, 7, 20
oxazolone / GT / hypothetical / 2, 8, 21

Reference List

1. Anensen,H. et al. Mutations induced by 5-formyl-2'-deoxyuridine in Escherichia coli include base substitutions that can arise from mispairs of 5-formyluracil with guanine, cytosine and thymine. Mutat. Res.476, 99-107 (2001).

2. Cooke,M.S., Evans,M.D., Dizdaroglu,M., & Lunec,J. Oxidative DNA damage: mechanisms, mutation, and disease. Faseb Journal17, 1195-1214 (2003).

3. Miyabe,I., Zhang,Q.M., Sugiyama,H., Kino,K., & Yonei,S. Mutagenic effects of 5-formyluracil on a plasmid vector during replication in Escherichia coli. Int. J Radiat. Biol.77, 53-58 (2001).

4. Zhang,Q.M. Role of the Escherichia coli and human DNA glycosylases that remove 5-formyluracil from DNA in the prevention of mutations. J Radiat. Res. (Tokyo).42, 11-19 (2001).

5. Zhang,Q.M. et al. Replication of DNA templates containing 5-formyluracil, a major oxidative lesion of thymine in DNA. Nucleic Acids Res.25, 3969-3973 (1997).

6. Kreutzer,D.A. & Essigmann,J.M. Oxidized, deaminated cytosines are a source of C --> T transitions in vivo. Proc. Natl. Acad. Sci. U. S. A95, 3578-3582 (1998).

7. Kasprzak,K.S. et al. Oxidative DNA base damage and its repair in kidneys and livers of nickel(II)-treated male F344 rats. Carcinogenesis.18, 271-277 (1997).

8. Evans,M.D., Dizdaroglu,M., & Cooke,M.S. Oxidative DNA damage and disease: induction, repair and significance. Mutat. Res.567, 1-61 (2004).

9. Liu,J., Zhou,W., & Doetsch,P.W. RNA polymerase bypass at sites of dihydrouracil: implications for transcriptional mutagenesis. Mol. Cell Biol.15, 6729-6735 (1995).

10. Cannon-Carlson,S.V., Gokhale,H., & Teebor,G.W. Purification and characterization of 5-hydroxymethyluracil-DNA glycosylase from calf thymus. Its possible role in the maintenance of methylated cytosine residues. J Biol. Chem.264, 13306-13312 (1989).

11. Hori,M. et al. Identification of high excision capacity for 5-hydroxymethyluracil mispaired with guanine in DNA of Escherichia coli MutM, Nei and Nth DNA glycosylases. Nucleic Acids Res.31, 1191-1196 (2003).

12. Baltz,R.H., Bingham,P.M., & Drake,J.W. Heat mutagenesis in bacteriophage T4: the transition pathway. Proc. Natl. Acad. Sci. U. S. A73, 1269-1273 (1976).

13. Karino,N., Ueno,Y., & Matsuda,A. Synthesis and properties of oligonucleotides containing 5-formyl-2'-deoxycytidine: in vitro DNA polymerase reactions on DNA templates containing 5-formyl-2'-deoxycytidine. Nucleic Acids Res.29, 2456-2463 (2001).

14. Tan,X., Grollman,A.P., & Shibutani,S. Comparison of the mutagenic properties of 8-oxo-7,8-dihydro-2'-deoxyadenosine and 8-oxo-7,8-dihydro-2'-deoxyguanosine DNA lesions in mammalian cells. Carcinogenesis.20, 2287-2292 (1999).

15. Kamiya,H. Mutagenicities of 8-hydroxyguanine and 2-hydroxyadenine produced by reactive oxygen species. Biol. Pharm. Bull.27, 475-479 (2004).

16. Cheng,K.C., Cahill,D.S., Kasai,H., Nishimura,S., & Loeb,L.A. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G----T and A----C substitutions. J Biol. Chem.267, 166-172 (1992).

17. Tuo,J., Jaruga,P., Rodriguez,H., Bohr,V.A., & Dizdaroglu,M. Primary fibroblasts of Cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress. FASEB J.17, 668-674 (2003).

18. Basu,A.K., Loechler,E.L., Leadon,S.A., & Essigmann,J.M. Genetic effects of thymine glycol: site-specific mutagenesis and molecular modeling studies. Proc. Natl. Acad. Sci. U. S A.86, 7677-7681 (1989).

19. Delaney,M.O., Wiederholt,C.J., & Greenberg,M.M. Fapy.dA induces nucleotide misincorporation translesionally by a DNA polymerase. Angew. Chem. Int. Ed Engl.41, 771-773 (2002).

20. Wiederholt,C.J. & Greenberg,M.M. Fapy.dG instructs Klenow exo(-) to misincorporate deoxyadenosine. J Am. Chem. Soc.124, 7278-7279 (2002).

21. Duarte,V., Gasparutto,D., Jaquinod,M., & Cadet,J. In vitro DNA synthesis opposite oxazolone and repair of this DNA damage using modified oligonucleotides. Nucleic Acids Res.28, 1555-1563 (2000).