Supplementary Tables S1-S4

Tanja Pyhäjärvi1*, Sonja T. Kujala1*§ and Outi Savolainen*§

Journal: Tree Genetics and Genomes

Manuscript title: Revisiting protein heterozygosity in plants—nucleotide diversity in allozyme coding genes of conifer Pinus sylvestris

Corresponding author: Tanja Pyhäjärvi, Department of Biology, P.O. Box 3000, 90014 University of Oulu, Phone: +358 8553 1793, Fax: +358 8 553 4112, email:

Table S1

Sampling, data and references for the studies used for investigating relationship between nucleotide diversity and allozyme diversity in 27 plant species.

Nucleotide diversity
Species / TREE / Samplinga / θb / Arcsinc / Reference
Arabidopsis lyrata / NO / 77 loci, Russian Karhumäki population / 0.0071 / 0.08 / Ross-Ibarra et al. 2008
Arabidopsis thaliana / NO / 335 loci, 12 accessions / 0.0081 / 0.09 / Schmid et al. 2005
Capsicum, semiwild / NO / 3 loci, 58 Mexican accessions / 0.0026 / 0.05 / Aguilar-Meléndez et al. 2009
Glycine max / NO / 13 BAC clones and 15 SSR flanking regions, 25 genotypes / 0.0026 / 0.05 / Zhu et al. 2003
Helianthus annuus, wild / NO / 18 loci, 10 populations / 0.0252 / 0.16 / Strasburg and Rieseberg 2008
Hordeum spontaneum / NO / 5 loci, 34 accessions / 0.0167 / 0.13 / Caldwell et al. 2006
Leavenworthia stylosa / NO / 8 loci, combined from several studies / 0.0425 / 0.21 / Table 5 in Filatov and Charlesworth 1999
Lolium perenne / NO / 11 loci, 20 European genotypes / 0.0250 / 0.16 / Xing et al. 2007
Lycopersicon chmielewskii / NO / 14 loci, 1 southcentral Peru population / 0.0003 / 0.02 / Roselius, Stephan and Städler 2005
Lycopersicon pimpinellifolium / NO / 14 loci, 1 northern Peru population / 0.0016 / 0.04 / Roselius, Stephan and Städler 2005
Oryza rufipogon / NO / 111 STS regions, 21 Asian accessions / 0.0052 / 0.07 / Caicedo et al. 2007
Secale cereale / NO / 14 amplicons, 5 inbred lines / 0.0203 / 0.14 / Varshney et al. 2007
Sorghum bicolor, cultivated / NO / 155 loci, 17 accessions / 0.0038 / 0.06 / Hamblin et al. 2006
Zea mays spp. parviglumis / NO / 26 loci, 13 individuals rangewide / 0.0170 / 0.13 / Ross-Ibarra, Tenaillon and Gaut 2009
Persea americana / YES / 4 loci, 21 wild accessions / 0.0102 / 0.10 / Chen et al. 2008
Picea abies / YES / 22 loci, 7 populations / 0.0040 / 0.06 / Heuertz et al. 2006
Picea breweriana / YES / 10 loci, 4 populations from natural range / 0.0020 / 0.04 / Chen et al. 2009
Picea glauca / YES / 10 loci, seeds from seed orchard originating from Québec populations / 0.0091 / 0.10 / Chen et al. 2009
Picea mariana / YES / 10 loci, seeds from seed orchard originating from Québec populations / 0.0046 / 0.07 / Chen et al. 2009
Pinus densata / YES / 7 loci, 5 populations from Tibetan plateau / 0.0122 / 0.11 / Ma, Szmidt and Wang 2006
Pinus radiata / YES / 7 loci, breeding population derived from Año Nuevo and Monterey / 0.0008 / 0.03 / Pot et al. 2005
Pinus sylvestris / YES / 16 loci, Northern group / 0.0072 / 0.09 / Pyhäjärvi et al. 2007
Pinus tabuliformis / YES / 7 loci, 3 populations from China / 0.0119 / 0.11 / Ma, Szmidt and Wang 2006
Pinus taeda / YES / 19 loci, 32 genotypes from natural range / 0.0064 / 0.08 / Brown et al. 2004
Pinus yunnanensis / YES / 7 loci, 3 populations from China / 0.0095 / 0.10 / Ma, Szmidt and Wang 2006
Populus tremula / YES / 5 loci, 4 European populations / 0.0160 / 0.13 / Ingvarsson et al. 2005
Pseudotsuga menziesii / YES / 121 loci, 24 unrelated trees / 0.0076 / 0.09 / Eckert et al. 2009
Allozyme diversity
Species / TREE / Sampling / Hd / Arcsinc / Reference
Arabidopsis lyrata / NO / 10 loci, Russian Karhumäki population / 0.269 / 0.55 / van Treuren et al. 1997
Arabidopsis thaliana / NO / 17 loci, 16 British populations / 0.148 / 0.40 / Abbot and Gomes 1989
Capsicum, semiwild / NO / 20 loci, 42 Mexican accessions / 0.077 / 0.28 / Loaiza-Figueroa et al. 1989
Glycine max / NO / 13 loci, 1005 accessions / 0.198 / 0.46 / Griffin and Palmer 1995
Helianthus annuus, wild / NO / 20 loci, 30 accessions / 0.310 / 0.59 / Cronn et al 1997
Hordeum spontaneum / NO / 4 loci, 148 accessions from Israel and Turkey / 0.514 / 0.80 / Kahler and Allard 1981
Leavenworthia stylosa / NO / 5 loci, 3 populations / 0.524 / 0.81 / Charlesworth and Yang 1998
Lolium perenne / NO / 7 loci, 20 European populations / 0.353 / 0.64 / Ursla Fernando, Hayward and Kearsey 1997
Lycopersicon chmielewskii / NO / 14 loci, 8 accessions from Peru / 0.053 / 0.23 / Rick et al. 1976 as reported in Hamrick, Linhart and Mitton 1979
Lycopersicon pimpinellifolium / NO / 11 loci, 43 populations from Ecuador and Peru / 0.128 / 0.37 / Rick, Fobes and Holle 1977 as reported in Hamrick, Linhart and Mitton 1979
Oryza rufipogon / NO / 22 loci, 21 Chinese populations / 0.095 / 0.31 / Gao and Hong 2000
Secale cereale / NO / 8 loci, 8 varieties / 0.295 / 0.57 / Adam, Simonsen and Loeschcke 1987
Sorghum bicolor, cultivated / NO / 27 loci, 83 accessions / 0.093 / 0.31 / Morden, Doebley and Schertz 1989
Zea mays spp. parviglumis / NO / 21 loci, 18 populations / 0.311 / 0.59 / Doebley, Goodman and Stuber 1984 as reported in Doebley 1989
Persea americana / YES / 10 loci, 33 accessions / 0.195 / 0.46 / Torres et al. 1978 as reported in Hamrick, Linhart and Mitton 1979
Picea abies / YES / 22 loci, 70 populations / 0.121 / 0.36 / Lagercrantz and Ryman 1990
Picea breweriana / YES / 26 loci, 4 populations / 0.200 / 0.46 / Ledig, Hodgskiss and Johnson 2005
Picea glauca / YES / 18 loci, 7 populations / 0.296 / 0.58 / Godt et al. 2001
Picea mariana / YES / 13 loci, 5 natural populations in Québec / 0.301 / 0.58 / Isabel, Beaulieu and Bousquet 1995
Pinus densata / YES / 12 loci, 3 populations from China / 0.232 / 0.50 / Wang, Szmidt and Savolainen 2001
Pinus radiata / YES / 31 loci, Año Nuevo population / 0.088 / 0.30 / Moran, Bell and Eldridge 1988
Pinus sylvestris / YES / 10 loci, 4 Finnish populations / 0.340 / 0.62 / Karhu et al. 1996
Pinus tabuliformis / YES / 12 loci, 8 populations from China / 0.205 / 0.47 / Wang, Szmidt and Savolainen 2001
Pinus taeda / YES / 25 loci, 90 clones / 0.282 / 0.56 / Conkle 1981 as reported on Ledig 1998
Pinus yunnanensis / YES / 12 loci, 3 populations from China / 0.190 / 0.45 / Wang, Szmidt and Savolainen 2001
Populus tremula / YES / 28 loci, 18 individuals from Europe / 0.127 / 0.36 / Rajora and Dancik 1992
Pseudotsuga menziesii / YES / 20 loci, 104 locations / 0.182 / 0.44 / Li and Adams 1989

a Someof the studies have wider sampling than reported here. Subsets are used for comparison to approximately match sampling from nucleotide diversity and allozyme diversity studies.

bθ-estimate: π if it is reported, otherwise Watterson’s θW. Estimate based on silent sites (synonymous and non-coding) recorded if available. Overall θ-estimate for the total sample is reported unless results are from a single population

cArcsin of square root of θ-estimate or He

d Total heterozygosity for the sample (HT) reported unless data from only one population are reported (in which case He for a population reported)

References for TABLE S1

Abbot RJ, Gomes MF. 1989. Population genetic structure and outcrossing rate of Arabidopsis thaliana (L.) Heynh. Heredity 62:411-418.

Adam D, Simonsen V, Loeschcke V. 1987. Allozyme variation in rye, Secale cereale L. Theor Appl Genet 74:560-565.

Aguilar-Melendez A, Morrell PL, Roose ML, Kim S. 2009. Genetic diversity and structure in semiwild and domesticated chiles (Capsicum annuum; Solanaceae) from Mexico. Am J Bot 96:1190-1202.

Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB. 2004. Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci U. S. A. 101:15255-15260.

Caicedo AL, Williamson SH, Hernandez RD, Boyko A, Fledel-Alon A, York TL, Polato NR, Olsen KM, Nielsen R, McCouch SR et al. 2007. Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet 3:1745-1756.

CaldwellKS, Russell J, Langridge P, Powell W. 2006. Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557-567.

Charlesworth D, Yang Z. 1998. Allozyme diversity in Leavenworthia populations with different inbreeding levels. Heredity 81:453-461.

Chen H, Morrell PL, Cruz Mdl, CleggMT. 2008. Nucleotide diversity and linkage disequilibrium in wild avocado (Persea americanaMill.). J Hered 99:382-389.

Chen J, Källman T, Gyllenstrand N, Lascoux M. 2010. New insights on the speciation history and nucleotide diversity of three boreal spruce species and a tertiary relict. Heredity. 104: 3-14.

ConkleMT. 1981. Isozyme variation and linkage in six conifer species. USDAForest Service General Technical Report PSW 48 :11-17.

Cronn R, Brothers M, Klier K, Bretting PK, Wendel JF. 1997. Allozyme variaiton in domesticated annual sunflower and its wild relatives. Theor Appl Genet 95:532-545.

Doebley JF. 1989. Isoenzymic evidence and the evolution of crop plants. In: Soltis DE, editor. Isozymes in plant biology. London: Chapman & Hall Ltd. p. 165-191.

Doebley JF, Goodman MM, Stuber CW. 1984. Isoenzymatic variation in Zea (Graminae). Syst Bot 9:203-218.

Eckert A, Wegrzyn JL, Pande B, Jermstad KD, Lee JM, Liechty JD, Tearse BR, Krutovsky KV, Neale DB. 2009. Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold-hardiness in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii). Genetics. In press.

Filatov DA, Charlesworth D. 1999. DNA polymorphism, haplotype structure and balancing selection in the Leavenworthia PgiC locus. Genetics 153:1423-1434.

Gao L-, Hong SGD. 2000. Allozyme variation and population genetic structure of common wild rice Oryza rufipogon Griff. in China. Theor Appli Genet 101:494-502.

Godt MJW, Hamrick JL, Edwards-Burke MA, Williams JH. 2001. Comparisons of genetic diversity in white spruce (Picea glauca) and jack pine (Pinus banksiana) seed orchards with natural populations. Can J For Res 31:943-949.

Griffin JD, Palmer RG. 1995. Variability of thirteen isozyme loci in the USDA soybean germplasm collections. Crop Sci 35:897-904.

HamblinMT, Casa AM, Sun H, MurraySC, Paterson AH, Aquadro CF, Kresovich S. 2006. Challenges of detecting directional delection after a bottleneck: Lessons from Sorghum bicolor. Genetics 173:953-964.

Hamrick JL, Linhart YB, Mitton JB. 1979. Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Ann Rev Ecol Syst 10:173-200.

Heuertz M, De Paoli E, Källman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N. 2006. Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce Picea abies (L.) Karst. Genetics 174:2095-2105.

Ingvarsson PK. 2005. Nucleotide polymorphism and linkage disequilbrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics 169:945-953.

Isabel N, Beaulieu J, Bousquet J. 1995. Complete congruence between gene diversity estimates derived from genotypic data at enzyme and random amplified polymorphic DNA loci in black spruce. Proc Natl Acad Sci U. S. A. 92:6369-6373.

Kahler AL, Allard RW. 1981. Worldwide patterns of genetic variation among four esterase loci in barley (Hordeum vulgare L.). Theor Appl Genet 59:101-111.

Karhu A, Hurme P, Karjalainen M, Karvonen P, Kärkkäinen K, Neale D, Savolainen O. 1996. Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor Appl Genet 93:215-221.

Lagercrantz U, Ryman N. 1990. Genetic structure of norway spruce (Picea abies) - concordance of morphological and allozymic variation. Evolution 44:38-53.

Ledig FT. 1998. Genetic variation in Pinus. In: Richardson DM, editor. Ecology and biogeography of Pinus. Cambridge: CambridgeUniversity Press. p. 251-280.

Ledig FT, Hodgskiss PD, Johnson DR. 2005. Genic diversity, genetic structure, and mating system of brewer spruce (Pinaceae), a relict of the arcto-tertiary forest. Am J Bot 92:1975-1986.

Li P, Adams WT. 1989. Range-wide patterns of allozyme variation in Douglas-fir (Pseudotsugamenziesii). Can J For Res 19:149-161.

Loaiza-Figueroa F, Ritland K, Cancino JAL, Tanksley SD. 1989. Patterns of genetic variation of the genus Capsicum (Solanaceae) in Mexico. Plant Syst. Evol. 165:159-188.

Ma XF, Szmidt AE, Wang XR. 2006. Genetic structure and evolutionary history of a diploid hybrid pine Pinus densata inferred from the nucleotide variation at seven gene loci. Mol Biol Evol 23:807-816.

Moran GF, Bell, JC, Eldridge KG. 1988. The genetic structure and the conservation of the five natural populations of Pinus radiate. Can J For Res 18: 506-514.

Morden CW, Doebley JF, Schertz KF. 1989. Allozyme variation in old world races of Sorghum bicolor (Poaceae). Am J Bot 76:247-255.

Pot D, McMillan L, Echt C, Le Provost G, Garnier-Géré P, Cato S. Plomion C. 2005. Nucleotide variation in genes involved in wood formation in two pine species. New Phyt 167: 101-112.

Pyhäjärvi T, García-Gil MR, Knürr T, Mikkonen M, W. W, Savolainen O. 2007. Demographic history has influenced nucleotide diversity in European Pinus sylvestris populations. Genetics 177:1713-1724.

Rajora OP, Dancik BP. 1992. Genetic characterization and relationships of Populus alba, P. tremula, and P. x canescens, and their clones. Theor Appl Genet 84:291-298.

Rick CM, Kesicki E, Fobes JF, Holle M. 1976. Genetic and biosystematic studies on two new sibling species of Lycopersicon from Interandean Perú. Theor Appl Genet 47:55-68.

Rick CM, Fobes JF, Holle M. 1977. Genetic variation in Lycopersicon pimpinellifolium: Evidence of evolutionary change in mating systems. Plant Syst. Evol. 127:139-170.

Roselius K, Stephan W, Stadler T. 2005. The relationship of nucleotide polymorphism, recombination rate and selection in wild tomato species. Genetics 171:753-763.

Ross-Ibarra J, Wright SI, Foxe JP, Kawabe A, DeRose-Wilson L, Gos G, Charlesworth D, Gaut BS. 2008. Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata. PLoS One 3:e2411.

Ross-Ibarra J, Tenaillon M, Gaut BS. 2009. Historical divergence and gene flow in the genus Zea. Genetics. In press.

Schmid KJ, Ramos-Onsins S, Ringys-Beckstein H, Weisshaar B, Mitchell-Olds T. 2005. A multilocus sequence survey in Arabidopsis thaliana reveals a genome-wide departure from a neutral model of DNA sequence polymorphism. Genetics 169:1601-1615.

Strasburg JL, Rieseberg LH. 2008. Molecular demographic history of the annual sunflowers Helianthus annuus and H. petiolaris--large effective population sizes and rates of long-term gene flow. Evolution 62:1936-1950.

Torres MA, Diedenhofen U, Bergh BO, Knight RJ. 1978. Enzyme polymorphisms as genetic markers in avocado. Am J Bot 65:134-139.

Ursla Fernando WM, HaywardMD, Kearsey MJ. 1997. Isozyme and quantitative traits polymorphisms in European provenances of perennial ryegrass (Lolium perenne L). Euphytica 93:263-269.

van Treuren R, Kuittinen H, Kärkkäinen K, Baena-Gonzalez E, Savolainen O. 1997. Evolution of microsatellites in Arabis petraea and Arabis lyrata, outcrossing relatives of Arabidopsis thaliana. Mol Biol Evol 14:220-229.

Varshney R, Beier U, Khlestkina E, Kota R, Korzun V, Graner A, Börner A. 2007. Single nucleotide polymorphisms in rye (Secale cereale L.): Discovery, frequency, and applications for genome mapping and diversity studies. Theor Appli Genet 114:1105-1116.

Wang X, Szmidt AE, Savolainen O. 2001. Genetic composition and diploid hybrid speciation of a high mountain pine, Pinus densata, native to the Tibetan plateau. Genetics 159:337-346.

Xing Y, Frei U, Schejbel B, Asp T, Lubberstedt T. 2007. Nucleotide diversity and linkage disequilibrium in 11 expressed resistance candidate genes in Lolium perenne. BMC Plant. Biol. 7:43.

Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB. 2003. Single-nucleotide polymorphisms in soybean. Genetics 163:1123-1134.

Table S2

Electrophoretic alleles and protein haplotypes of trees that were used to identify six allozyme coding loci of Pinus sylvestris.

Locus / Tree-megagametophytea / Electrophoretic allele / Protein haplotypeb
6pgdB / AC1029-4 / 2 / GRTG
6pgdB / AC1029-5 / 1 / DKTA
6pgdB / AC2047-2 / 2 / GKTA
6pgdB / AC2047-3 / 1 / DKTA
6pgdB / AC2081-1 / 2 / GRTG
6pgdB / AC2081-4 / 1 / DKTA
6pgdB / AC1002-2 / 1 / DKSA
6pgdB / AC1011-1 / 2 / GKTA
6pgdB / AC1014-1 / 1 / DKTA
6pgdB / AC1022-4 / 1 / DKTA
6pgdB / AC2033-5 / 1 / DKTA
6pgdB / AC2101-5 / 2 / GKTA
6pgdB / AC3013-1 / 1 / DKSA
6pgdB / AC3063-3 / 1 / DKTA
6pgdB / Y3001-1 / 2 / GKTA
6pgdB / Z3001-2 / 1 / DKTA
6pgdB / AC1029-4 / 2 / GRTG
6pgdB / AC1029-5 / 1 / DKTA
6pgdB / AC2047-2 / 2 / GKTA
6pgdB / AC2047-3 / 1 / DKTA
gdh / AC2033-2 / 2 / H
gdh / AC2033-5 / 1 / D
gdh / AC2081-1 / 2 / H
gdh / AC2081-4 / 1 / D
gdh / AC3036-2 / 1 / D
gdh / AC3036-3 / 2 / H
gdh / AC1002-2 / 1 / D
gdh / AC1011-1 / 2 / H
gdh / AC1014-1 / 2 / H
gdh / AC1022-2 / 2 / H
gdh / AC2101-1 / 2 / H
gdh / Y3001-1 / 1 / D
gdh / Z3001-4 / 1 / D
gotC / AC2033-2 / 0 / LN
gotC / AC2033-5 / 1 / LD
gotC / Y3001-1 / 1 / LD
gotC / Y3001-4 / 0 / VN
gotC / Z3001-2 / 1 / LD
gotC / Z3001-3 / 0 / LN
gotC / AC1001-6 / 0 / LN
gotC / AC1002-1 / 0 / LN
gotC / AC1011-7 / 0 / LN
gotC / AC1014-8 / 1 / LD
gotC / AC1019-8 / 0 / LN
gotC / AC1029-8 / 1 / LD
gotC / AC1065-2 / 0 / LN
gotC / AC2047-2 / 0 / LN
gotC / AC2081-3 / 0 / LN
gotC / AC3063-1 / 0 / LN
mdhA / AC1011-7 / 2 / TNN
mdhA / AC1011-8 / 1 / TDN
mdhA / AC2101-1 / 2 / TNN
mdhA / AC2101-5 / 1 / TDN
mdhA / AC3013-2 / 2 / TNN
mdhA / AC3013-5 / 1 / TDN
mdhA / AC3036-2 / 1 / TDN
mdhA / AC3036-3 / 2 / TNN
mdhA / AC1001-3 / 2 / NNN
mdhA / AC1002-1 / 2 / TNN
mdhA / AC1014-1 / 2 / NNN
mdhA / AC1019-2 / 2 / TNN
mdhA / AC1022-3 / 2 / TNN
mdhA / AC1029-8 / 1 / TDN
mdhA / AC1043-4 / 2 / TNN
mdhA / AC2033-2 / 2 / TNT
mdhA / AC2081-1 / 2 / TNN
mdhA / AC3063-3 / 2 / TNT
mdhA / Z3001-3 / 2 / TNN
mdhB / AC1002-1 / 3 / LL
mdhB / AC1002-2 / 1 / LL
mdhB / AC1011-7 / 1 / LL
mdhB / AC1011-8 / 2 / RL
mdhB / AC1019-2 / 2 / RL
mdhB / AC1019-3 / 1 / RF
mdhB / AC1043-4 / 3 / LL
mdhB / AC1043-5 / 2 / RL
mdhB / AC2033-2 / 1 / RL
mdhB / AC2033-5 / 2 / RL
mdhB / AC3013-1 / 1 / RL
mdhB / AC3013-2 / 2 / RL
mdhB / AC1014-1 / 1 / RF
mdhB / Z3001-3 / 1 / LL
aco / AC1001-3 / 2 / TDMPTKSQ
aco / AC1001-5 / 1 / ADMPTQTQ
aco / AC1011-1 / 2 / ADMPMKSQ
aco / AC1011-4 / 3 / TDLRTKSQ
aco / AC1014-1 / 1 / ADMPTQTQ
aco / AC1014-4 / 2 / ADMPTKSQ
aco / AC1022-2 / 2 / TDLPTKSQ
aco / AC1022-3 / 3 / AGMPTKTQ
aco / AC1043-4 / 3 / AGMPTKTQ
aco / AC1043-5 / 2 / TDLPTKSQ
aco / AC2101-1 / 3 / AGMPTKTQ
aco / AC2101-5 / 2 / SDMPTKSQ
aco / Y3001-1 / 3 / ADMPTKTK
aco / Y3001-4 / 2 / TDMPTKSQ
aco / Z3001-2 / 3 / ADMPTKTK
aco / Z3001-4 / 2 / TDMPTKSQ

a Two megagametophytes from each tree that was heterozygous for particular loci are presented first, followed by trees that were homozygous for the electrophoretic locus. Each tree’s number and megagametophyte number are separated by a dash.

b Only variable amino acid sites are presented. The amino acid change segregating with electrophoretic allele is indicated by boldface.

Locus / Tree-megagametophytea / Electrophoretic allele / Protein haplotypeb
6pgdB / AC1002-2 / 1 / DKSA
6pgdB / AC3013-1 / 1 / DKSA
6pgdB / AC1029-5 / 1 / DKTA
6pgdB / AC2047-3 / 1 / DKTA
6pgdB / AC2081-4 / 1 / DKTA
6pgdB / AC1014-1 / 1 / DKTA
6pgdB / AC1022-4 / 1 / DKTA
6pgdB / AC2033-5 / 1 / DKTA
6pgdB / AC3063-3 / 1 / DKTA
6pgdB / Z3001-2 / 1 / DKTA
6pgdB / AC1029-5 / 1 / DKTA
6pgdB / AC2047-3 / 1 / DKTA
6pgdB / AC1029-4 / 2 / GRTG
6pgdB / AC2081-1 / 2 / GRTG
6pgdB / AC1029-4 / 2 / GRTG
6pgdB / AC2047-2 / 2 / GKTA
6pgdB / AC1011-1 / 2 / GKTA
6pgdB / AC2101-5 / 2 / GKTA
6pgdB / Y3001-1 / 2 / GKTA
6pgdB / AC2047-2 / 2 / GKTA
gdh / AC2033-5 / 1 / D
gdh / AC2081-4 / 1 / D
gdh / AC3036-2 / 1 / D
gdh / AC1002-2 / 1 / D
gdh / Y3001-1 / 1 / D
gdh / Z3001-4 / 1 / D
gdh / AC2033-2 / 2 / H
gdh / AC2081-1 / 2 / H
gdh / AC3036-3 / 2 / H
gdh / AC1011-1 / 2 / H
gdh / AC1014-1 / 2 / H
gdh / AC1022-2 / 2 / H
gdh / AC2101-1 / 2 / H
gotC / AC2033-2 / 0 / LN
gotC / Z3001-3 / 0 / LN
gotC / AC1001-6 / 0 / LN
gotC / AC1002-1 / 0 / LN
gotC / AC1011-7 / 0 / LN
gotC / AC1019-8 / 0 / LN
gotC / AC1065-2 / 0 / LN
gotC / AC2047-2 / 0 / LN
gotC / AC2081-3 / 0 / LN
gotC / AC3063-1 / 0 / LN
gotC / Y3001-4 / 0 / VN
gotC / AC2033-5 / 1 / LD
gotC / Y3001-1 / 1 / LD
gotC / Z3001-2 / 1 / LD
gotC / AC1014-8 / 1 / LD
gotC / AC1029-8 / 1 / LD
mdhA / AC1011-8 / 1 / TDN
mdhA / AC2101-5 / 1 / TDN
mdhA / AC3013-5 / 1 / TDN
mdhA / AC3036-2 / 1 / TDN
mdhA / AC1029-8 / 1 / TDN
mdhA / AC1001-3 / 2 / NNN
mdhA / AC1014-1 / 2 / NNN
mdhA / AC1011-7 / 2 / TNN
mdhA / AC2101-1 / 2 / TNN
mdhA / AC3013-2 / 2 / TNN
mdhA / AC3036-3 / 2 / TNN
mdhA / AC1002-1 / 2 / TNN
mdhA / AC1019-2 / 2 / TNN
mdhA / AC1022-3 / 2 / TNN
mdhA / AC1043-4 / 2 / TNN
mdhA / AC2081-1 / 2 / TNN
mdhA / Z3001-3 / 2 / TNN
mdhA / AC2033-2 / 2 / TNT
mdhA / AC3063-3 / 2 / TNT
mdhB / AC1002-2 / 1 / LL
mdhB / AC1011-7 / 1 / LL
mdhB / Z3001-3 / 1 / LL
mdhB / AC1019-3 / 1 / RF
mdhB / AC1014-1 / 1 / RF
mdhB / AC2033-2 / 1 / RL
mdhB / AC3013-1 / 1 / RL
mdhB / AC1011-8 / 2 / RL
mdhB / AC1019-2 / 2 / RL
mdhB / AC1043-5 / 2 / RL
mdhB / AC2033-5 / 2 / RL
mdhB / AC3013-2 / 2 / RL
mdhB / AC1002-1 / 3 / LL
mdhB / AC1043-4 / 3 / LL
aco / AC1001-5 / 1 / ADMPTQTQ
aco / AC1014-1 / 1 / ADMPTQTQ
aco / AC1011-1 / 2 / ADMPMKSQ
aco / AC1014-4 / 2 / ADMPTKSQ
aco / AC2101-5 / 2 / SDMPTKSQ
aco / AC1022-2 / 2 / TDLPTKSQ
aco / AC1043-5 / 2 / TDLPTKSQ
aco / AC1001-3 / 2 / TDMPTKSQ
aco / Y3001-4 / 2 / TDMPTKSQ
aco / Z3001-4 / 2 / TDMPTKSQ
aco / Y3001-1 / 3 / ADMPTKTK
aco / Z3001-2 / 3 / ADMPTKTK
aco / AC1022-3 / 3 / AGMPTKTQ
aco / AC1043-4 / 3 / AGMPTKTQ
aco / AC2101-1 / 3 / AGMPTKTQ
aco / AC1011-4 / 3 / TDLRTKSQ

a Each tree’s number and megagametophyte number are separated by a dash.

b Only variable amino acid sites are presented. The amino acid change segregating with electrophoretic allele is indicated by boldface.

Table S3

Primers used for sequencing the allozyme coding loci.

Locus / pcr/seq / Forward-primer / Reverse-primer / [MgCl] / Ta
6pgdB / pcr / 5’-GCCGAGGATCTCAAGAATC-3’ / 5’-ATAAGCAATTGATAGGGAAAACTT-3’ / 2.0 / 50
seq / 5’-GCACCAGGCTTTTGATACTTG-3’ / 5’-CCATCCCCCTTATCATCCTTG-3’
seq / 5’-GATGGGAGTCTCTGGCGGTGAGGAA-3’
aco f1 / pcr / 5’-TCCTCAAGTGGGGCTCAAC-3’ / 5’-CGACCTGTTAACCTCAAATACTGC-3’ / 2.0 / 61
seq / 5’-AAATGGGCCACCATTATACATC-3’ / 5’-ATGGATGCTGTCCACTTTATACC-3’
seq / 5’-TGATTTGAGCACAGTCCATGA-3’ / 5’-TTTCCAGATGTTTATTTGATAATACTG-3’
seq / 5’-AGACAAAGCATTCCCACACC-3’ / 5’-GCTGTGGCTCACCTCATTTT-3’
pcr / 5’-TGGAGTGACAGCTACGGACTTAGTT-3’ / 5’-CAGCCCCAAGCATGACATTA-3’ / 2.5 / 57
seq / 5’-TTGCAAAAACCAGTGCAGTC-3’ / 5’-AGTGAGTTGTTCAAATCAGTGTCC-3’
aco f2 / pcr / 5’-CTACATGTATTGGAAACTCGGGAGA-3’ / 5’-ATGTGGACCAGGAGGAGTCATT-3’ / 1.5 / 54
pcr / 5’-TCCTGTTCCAACTGGCACTTTGTAT-3’ / 5’-CAGGCTTTATCACATTATCCTCTTA-3 ’* / 2.0 / 53
seq / 5’-GTTTATTGTTTTCAACCAGGGTGTG-3’ / 5’-ATAGCCTCATCAAAAATGTCCC-3’
seq / 5’-ATAAACAATAGAAGAGAACGGGTCA-3’
gdh / pcr / 5’-TGTGACTACTCGCTCCTACACTCT-3’ / 5’-CTACAATCTTTCCACCCTTTTCAT-3’ * / 1.5 / 52
seq / 5’-ATTATCCCCCATTGCTTGTATTTTC-3’ / 5’-CCAAAACCCTGAAAAGGTCA-3’
seq / 5’-TGGGGTAGTGGTAGGATGAATGGTG-3’ / 5’-CTCACCATTCATCCTACCACTACCC-3’
seq / 5’-TTTCTCATAATAGGGAACCACTGTG-3’ / 5’-AACAAAAGAAGGGTGTAGCATCC-3’
seq / 5’-TCTAAGGTTGAGTTACTTGATGG-3’ / 5’-CAATACCACCCTTTGCTCCCCCATA-3’
pcr / 5’-CTGCAACTGGTAGAGGTGTTATG-3’ / 5’-GTGGTTGACATGGAGAAAAGTGTA-3’ / 2.0 / 59
seq / 5’-TTGCATAGGCTACTTTGTTGAGA-3’ / 5’-CCAAAACCTCTACAACTTCAACTGA-3’
seq / 5’-GATAGACTTGCCAGTTTGCCTTTTT-3’ / 5’-ACACAACAAAACTGGCAAGAAGCAT-3’
gotC / pcr / 5’-AAGATCCGAGCCCTGTG-3’ / 5’-ACCTTCCATCACCAAGTATCAG-3’ / 1.5 / 59
pcr / 5’-ACAAGGAGTATTTGCCCATAACTG-3’ / 5’-TTTGCATACGGGTTCCATTTAG-3’ / 2.0 / 57
pcr / 5’-GGCAATCATCCCAAGATCTTTACTC-3’ / 5’-GTTCAGGCCTTGCATGTTTTATTTT-3’ / 2.0 / 55
seq / 5’-GGGATTTGCCAGTGGAAGCCTTGAT-3’ / 5’-AGTACATTGGGCGAATAACC-3’
mdhA / pcr / 5’-GGTTATGCATTGGTGCCTATGATT-3’ / 5’-ACTTGACGTTGTAACCAGCATACTC-3’ / 2.0 / 60
seq / 5’-AATAGGGCTCTTGGACAGATTTTAG-3’ / 5’-ACGTCTGGATACTGGCTTGAAGAGT-3’
seq / 5’-TTGCACGAGATCCTACTTATTCTGT-3’ / 5’-ATGCCAGGTGGAACATCATAA-3’
mdhB f1 / pcr / 5’-GAGATCTGAACAAGGAGGAGAAGA-3’ / 5’-CTGCTCCACATGATAAAAACTGAG-3’ / 2.0 / 50
seq / 5’-CGGGAAAAGATTACCTGTGC-3’
pcr / 5’-GTATCCTGCAATCTCGAGAGAAAA-3’ / 5’-GAGACCAACCATCAAGAGACAAAC-3’ / 2.5 / 55
mdhB f2 / pcr / 5’-ATTTTTGCACTAGAGGACCTTTTT-3’ / 5’-GCTTTGGCAGCATAGAAAGTCT-3’ / 2.0 / 51
pcr / 5’-TGTTAATTCAACTGTACCCATTGC-3’ / 5’-TCAGAGCTTTGATATCCTCATCTG-3’ / 2.5 / 55

PCR-primers and internal sequencing primers indicated in second column. PCR-primers were also used in sequencing reactions, except when indicated with*. [MgCl]: magnesium concentration (mM), Ta: annealing temperature in degree Celsius.

Table S4

Silentsiteπ, KA/KS and heterozygosities (Hpe and He) of Pinus sylvestris allozyme coding loci used for regression analysis

Locus / πsil / KA/KS / Hpea / Heb
6pgdB / 0.009 / 0.463 / 0.43 / 0.401
aco f1 / 0.008 / 0.111 / 0.278 / 0.138
aco f2 / 0.009 / 0.126 / 0.278 / 0.138
gdh / 0.003 / NA / 0.458 / 0.463
gotC / 0.010 / 0.020 / 0.408 / NA
mdhA / 0.008 / 0.013 / 0.056 / 0.076
mdhB f1 / 0.007 / 0.130 / NA / 0.468
mdhB f2 / 0.009 / 0.300 / NA / 0.468

Notethat same heterozygosities have been used for both fragments of aco and mdhB. NA: data was either not available or not possible to calculate.

a Predicted from the nucleotide data of this study

b He in natural seedlings (Muona O, Harju A, Kärkkäinen K. 1988. Genetic comparison of natural and nursery grown seedlings of Pinus sylvestris using allozymes. Scand J for Res 3:37-46.)