Supplementary table 1. Nucleotide sequences of primers used for PCR amplification in PBMCs and liver.

Gene / Forward primer
(5’ to 3’) / Reverse primer
(5’ to 3’) / Ref. or Acc. No.
Abca1 / TTGGATGGATTATATTGGACTGC / TGGTCTCATTGAAAGCTTCTCTC / (1)
Abcg1 / CTTCTCCATGCTGTTCCTCATG / GCCAGGTAGTAGGCCTTCAG / *
Acadvl / AGATGAGTGCATCCAGATAATGG / AATGTCATTTGTCCCTTCAAAGA / (1)
Acat1 / AGCAAGATGAAGCCCAGAGA / CCATTGTCCAGAGATGCAGA / *
Acat2 / GGTGGAATTATGTGGCCAAGA / CATGTTGGCAAAGACAGGGAC / (2)
Acc / ACACTGGCTGGCTGGACAG / CACACAACTCCCAACATGGTG / (3)
Atgl / CACTTTAGCTCCAAGGATGA / TGGTTCAGTAGGCCATTCCT / (4)
β-actin / ACGTCGACATCCGCAAAGACCTC / TGATCTCCTTCTGCATCCGGTCA / (5)
Cpt1β / CCCACAGACCCAGGAACTT / GAAGGCGAACACAGATAGCC / AY762567.1
Dgat2 / TACAAGCAGGTGATCTTTGAGG / GGGCGAAACCAATATACTTCT / (1)
Fabppm / GGAGCCAGTTGCAAAG / ACGGCTCCTGGTCAAA / *
Fas / AGCCCCTCAAGTGCACAGTG / TGCCAATGTGTTTTCCCTGA / (1)
Gyk / CCTCTCTACAATGCCGTGGT / TCAATGGTCCCAAAAAGAGC / *
Gpat / GCAGACATCTGCTTCACCAA / GCAGGATGATGGGGTTTAGA / (6)
Hmgcr / CGAAGGGTTTGCAGTGATAAAGGA / GCCATAGTCACATGAAGCTTCTGTA / (7)
Hmgcs1 / CAGCTCTTTCACCATGCCTGG / TACTTTCCAGCATCTACACCATC / *
Hsl / GGTGACACTCGCAGAAGACAATA / GCCGCCGTGCTGTCTCT / (4)
Ldlr / GCATCACACTAGATCTTCCCAGT / GAGTTTGGAATCAACCCAATAGA / (1)
Lss / CCCTGAACTATGTGGCTCT / ATAGGGTGTTGAGTCCTTCC / (8)
Pparγ / CTCACGAAGAGCCTTCCAAC / GGATCCGGCAGTTAAGATCA / AB525757.1
Pparα / GTGGCTGCTATAATTTGCTGTG / AGCTTCGGGAAGAGAAAGGTAT / (1)
Scd1 / ACATGTCTGACCTGAAAGCTGA / GTACCTCTGGAACATCAC / (1)
Srb1 / AGGAGCATTCCTTGTTCCTAGAC / CAGGACTACTGGCTCGATCTTC / (1)
Srebp1 / GCGGACGCAGTCTGGG / ATGAGCTGGAGCATGTCTTCAAA / (1)
Ucp2 / GGTCGGAGATACCAGAGCAC / ATGAGGTTGGCTTTCAGGAG / *

Hamsters were fed with a standard diet (STD) or a high fat diet (HFD) diet during 30 days and received a daily oral dose of GSPE (25 mg per kg body weight) or the vehicle during the last 15 days. The table shows the nucleotide sequences of primers used for PCR amplification in PBMCs and liver. Abca1, ATP-binding cassette, sub-family A (ABC1), member 1; Abcg1, ATP-binding cassette, sub-family G (WHITE), member 1; Acadvl, acyl-CoA dehydrogenase, very long chain; Acat1, Acat1 acetyl-CoA acetyltransferase 1; Acat2, Acat2 acetyl-CoA acetyltransferase 2; Acc, acetyl-Coenzyme A carboxylase; Atgl, adipose triglyceride lipase; β-actin, beta-actin; Cpt1β, carnitine palmitoyltransferase I beta; Dgat2, diacylglycerol acyltransferase-2; Fabppm: fatty acid binding protein plasma membrane; Fas, fatty acid synthase; Gyk: glycerol kinase; Gpat, glycerol-3-phosphate acyltransferase; Hmgcr, 3-hydroxy-3-methylglutaryl-CoA reductase; Hmgcs1, 3-hydroxy-3-methylglutaryl-CoA synthase 1 (soluble); Hsl, hormone-sensitive lipase; Ldlr, low density lipoprotein receptor; Lss, lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase); Pparα, peroxisome proliferator-activated receptor alpha; Pparγ, peroxisome proliferator-activated receptor gamma; Scd1, stearoyl-CoA desaturase-1; Srb1, scavenger receptor class B, member 1; Srebp1, sterol regulatory element-binding protein; Ucp2, uncoupling protein 2 (mitochondrial, proton carrier). Primer pairs for PCR were designed using Primer3 software and sequence information obtained from Genbank. *No hamster sequence available. In these cases primers were designed to highly conserved regions determined by multiple sequence alignments performed on mice, rats and humans.

References

1. Basciano H, Miller AE, Naples M, Baker C, Kohen R, Xu E et al. Metabolic effects of dietary cholesterol in an animal model of insulin resistance and hepatic steatosis. Am J Physiol Endocrinol Metab 2009; 297(2): E462-73.

2. Lecker JL, Matthan NR, Billheimer JT, Rader DJ, Lichtenstein AH. Impact of dietary fat type within the context of altered cholesterol homeostasis on cholesterol and lipoprotein metabolism in the F1B hamster. Metabolism. 2010;59(10):1491-501.

3. Zabala A, Churruca I, Fernandez-Quintela A, Rodriguez VM, Macarulla MT, Martinez JA et al. trans-10,cis-12 Conjugated linoleic acid inhibits lipoprotein lipase but increases the activity of lipogenic enzymes in adipose tissue from hamsters fed an atherogenic diet. The British journal of nutrition 2006; 95(6): 1112-9.

4. Lasa A, Churruca I, Simon E, Fernandez-Quintela A, Rodriguez VM, Portillo MP. Trans-10, cis-12-conjugated linoleic acid does not increase body fat loss induced by energy restriction. The British journal of nutrition 2008; 100(6): 1245-50.

5. Kim H, Bartley GE, Rimando AM, Yokoyama W. Hepatic gene expression related to lower plasma cholesterol in hamsters fed high-fat diets supplemented with blueberry peels and peel extract. Journal of agricultural and food chemistry 2010; 58(7): 3984-91.

6. Bratoeff E, Sainz T, Cabeza M, Heuze I, Recillas S, Perez V et al. Steroids with a carbamate function at C-17, a novel class of inhibitors for human and hamster steroid 5alpha-reductase. J Steroid Biochem Mol Biol 2007; 107(1-2): 48-56.

7. Jiao R, Zhang Z, Yu H, Huang Y, Chen ZY. Hypocholesterolemic activity of grape seed proanthocyanidin is mediated by enhancement of bile acid excretion and up-regulation of CYP7A1. J Nutr Biochem. 2010;21(11):1134-9.

8. Villagra A, Ulloa N, Zhang X, Yuan Z, Sotomayor E, Seto E. Histone deacetylase 3 down-regulates cholesterol synthesis through repression of lanosterol synthase gene expression. J Biol Chem. 2007; 7;282(49):35457-70.