SUPPLEMENTARY MATERIAL to the article

Novel Salts of 2,4-Diaminoquinazoline - Searching for Materials for Second Harmonic Generation Based on a Promising Polarizable Cation

Michaela Fridrichováa*, Ivan Němeca, Ivana Císařováa, Naďa Tesařováb, Petr Němecb, Aslı Karakaşc, Nihal Kahramanc, Mehmet Taşerc

aCharles University in Prague, Faculty of Science, Department of Inorganic Chemistry, Hlavova 2030, 128 40 Prague 2, Czech Republic

bCharles University in Prague, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic

cDepartment of Physics, Faculty of Sciences, Selçuk University,

TR-42049 Campus, Konya, Turkey

1. Vibrational spectra of 2,4-diaminoquinazolinium(1+) chloride dihydrate (1) and 2,4-diaminoquinazolinium(1+) L-tartrate dihydrate (2)

1.1 Experimental

IR spectra were recorded using nujol and fluorolube mull (AgCl windows – MID IR region, PE windows – FAR IR region) techniques on a Nicolet 6700 FTIR spectrometer with 2 cm-1 resolution and HappGenzel apodization in the 100 - 4000 cm-1 region.

The Raman spectra of polycrystalline samples were recorded on a Nicolet 6700 FTIR spectrometer equipped with the Nicolet Nexus FT Raman module (2 cm-1 resolution, Happ–Genzel apodization, 1064 nm Nd:YVO4 laser excitation, 200 mW power at the sample) in the 100–3700 cm-1 region. Recorded maxima of vibrational spectra are presented as a peaklist.

1.2 Peaklist of 1

1.2.1 FT IR spectra

198w, 306w, 378w, 387w, 465w, 504m, 526m, 575m, 625m, 706m, 764m, 892w, 955w, 978w, 1028w, 1075w, 1126m, 1142w, 1166m, 1179m, 1280m, 1343m, 1419m, 1470m, 1483s, 1530s, 1594m, 1643s, 1682s, 2690m, 2796m, 2860m, 3187s, 3324s.

1.2.2 FT Raman spectra

149w, 183w, 231w, 284m, 310m, 382m, 422w, 464s, 499s, 522w, 574m, 592m, 682vs, 763m, 895w, 980w, 1029s, 1052w, 1076w, 1149w, 1184m, 1270m, 1346vs, 1411s, 1477m, 1526m, 1597s, 1614m, 1638w, 1660w, 1669w, 1679w, 3071m, 3180w, 3335w.

1.3Peaklist of 2

1.3.1 FT IR spectra

198w, 306w, 378w, 387w, 422w, 465w, 498w, 525m, 579w, 605m, 653m, 671m, 714m, 738w, 759m, 843w, 860w, 876w, 895w, 916w, 955w, 992w,1050m, 1106m, 1133w, 1156w,1172w,1204w, 1273m, 1347m,1360s, 1403sh, 1420m,1481m, 1519m, 1566m, 1609s, 1663vs, 2683w, 2860w, 2953m, 3115s, 3326s, 3437w, 2488w, 3586w.

1.3.2 FT Raman spectra

183m, 233w, 293m, 309m, 386m, 422w, 465s, 498s, 527w, 578m, 595m, 685vs, 764w, 798w, 846w, 876w, 898w, 957w, 992w, 1032s, 1049m, 1093w, 1156w, 1175w, 1201w, 1269m, 1345vs, 1413s, 1479m, 1537m, 1571w, 1598m, 1615m, 1650w, 1685w, 2956m, 3075m, 2090sh, 3145w, 3302w, 3444w.

2. Notes on determination of the space group of 1

As the symmetry of the diffraction pattern as well as the systematic extinction witnessed to the monoclinic P21 or P21/m space groups, there was an ambiguity in 1 space group determination. To overcome this, the structure was solved in P21 space group and checked for additional symmetry by Platon software. The non-crystallographic inversion center was detected, however, this symmetry was fulfilled by only 93% of crystal structure.

As follows from Figure 1, the part of the structure which violates this inversion are the water molecules. Therefore the choice of this inversion as a crystallographic one in the space group P-1 would result in disorder in positions of water molecules. There was no indication of such disorder in the structure as the positions of water molecules were solved reliably and all hydrogen atoms were clearly visible on difference Fourier maps. Considering this, and to the best of our knowledge, the presented P21 symmetry is correct. This opinion is further supported by the fact that 1 exhibited a non-zero SHG efficiency which is possible only in non-centrosymmetric structures.

Figure 1 View of structure 1 in detail (the non-crystallographic inversion centers are indicated by green circles between two neighbouring cations)

3. Lists of the hydrogen bonds

Table 1 Hydrogen bonds of 1

D-H...Ad(D-H)d(H...A)d(D...A)<(DHA)

N11-H11...O4W0.93(3)1.79(3)2.714(2)173(2)

O1W-H11W...O2Wi0.93(3)1.83(3)2.748(2)174(3)

O1W-H12W...Cl10.82(4)2.41(4)3.171(2)156(3)

N12-H12A...Cl2ii0.84(3)2.64(3)3.301(2)137(2)

N12-H12B...N23iii0.85(2)2.30(2)3.151(2)178(2)

N14-H14A...Cl1i0.94(2)2.43(2)3.319(2)159(2)

N14-H14B...Cl10.88(3)2.39(3)3.232(2)161(3)

N21-H21...O1Wiv0.90(2)1.86(2)2.757(2)173(2)

O2W-H21W...Cl10.83(3)2.50(3)3.258(2)154(3)

O2W-H22W...O1Wv0.86(4)2.23(4)2.972(2)144(3)

N22-H22A...Cl1iv0.89(3)2.44(3)3.251(2)153(3)

N22-H22B...N13vi0.87(2)2.10(2)2.966(2)172(2)

N24-H24B...Cl20.94(3)2.37(3)3.273(2)160(3)

N24-H24A...Cl2vii0.83(2)2.45(2)3.249(2)162(2)

O3W-H31W...Cl2viii0.95(3)2.27(3)3.208(2)167(2)

O3W-H32W...Cl2ix0.94(3)2.22(3)3.149(2)169(2)

O4W-H41W...O3Wx0.85(3)1.90(3)2.747(2)173(3)

O4W-H42W...Cl2viii0.91(4)2.20(4)3.108(2)172(3)

Note: Symmetry transformations used to generate equivalent atoms:

(i) 1-x, 1/2+y, 1-z; (ii) 2-x, 1/2+y, 2-z; (iii) x, 1+y, z; (iv) 1-x, -1/2+y, 1-z; (v) 1+x, y, z; (vi) x, -1+y, z; (vii) 2-x, -1/2+y, 2-z; (viii) -1+x, y, z; (ix) 1-x, 1/2+y, 2-z; (x) 1-x, -1/2+y, 2-z;

Table 2 Hydrogen bonds of 2

D-H...Ad(D-H)d(H...A)d(D...A)<(DHA)

O5-H5...O10,99002,34002,689(2)100,00

O5-H5...N310,99002,05002,987(2)155,00

O6-H6...O30,97001,96002,668(2)128,00

N11-H11...O3i0,95001,92002,846(2)167,00

O1W-H11W...O50,98001,94002,881(2)159,00

N21-H21...O1ii0,97002,54003,266(2)131,00

N21-H21...O2ii0,97001,87002,835(2)171,00

O1W-H12W...O2iii0,94001,99002,857(2)152,00

N11-H12A...O4i1,01001,80002,782(2)166,00

N12-H12B...O30,90002,12002,999(2)164,00

O2W-H21W...O60,99001,89002,827(2)156,00

N22-H22A...O2iv0,97001,95002,885(2)162,00

N22-H22B...O1ii0,86002,09002,917(2)161,00

O2W-H22W...O3v0,92002,57003,228(2)129,00

O2W-H22W...O5v0,92002,43003,262(2)150,00

N14-H14A...O10,97001,85002,811(2)175,00

N14-H14B...O1Wvi0,86002,08002,935(2)170,00

N24-H24A...O4iv0,91001,98002,879(2)169,00

N24-H24B...O2Wvii1,01001,98002,959(2)165,00

C110-H110...O1Wvi0,93002,57003,470(2)162,00

C210-H210...O2Wvii0,93002,51003,407(2)163,00

Note: Symmetry transformations used to generate equivalent atoms:

(i) 1-x,-1/2+y,-z; (ii) 2-x,-1/2+y,1-z; (iii) -1+x,y,z; (iv) x,-1+y,z; (v) 1+x,y,z; (vi) 1-x,

-1/2+y,1-z; (vii) 2-x,-1/2+y,-z

4. Selected bond lengths (Å) and angles (°) of 1 and 2

Bond / 1 / 2 / Angle / 1 / 2
N11-C12 / 1.337(2) / 1.342(2) / C12-N13-C14 / 118.3(1) / 118.2(1)
N11-C16 / 1.382(2) / 1.382(2) / C14-C15-C16 / 116.1(1) / 116.3(1)
N12-C12 / 1.329(2) / 1.328(2) / N11-C12-N12 / 118.8(2) / 117.7(1)
N13-C12 / 1.345(2) / 1.341(2) / N11-C12-N13 / 123.1(2) / 123.2(1)
N13-C14 / 1.338(2) / 1.336(2) / N11-C16-C15 / 118.8(1) / 118.5(1)
N14-C14 / 1.327(2) / 1.325(2) / N11-C16-C17 / 120.4(2) / 120.9(1)
C14-C15 / 1.454(2) / 1.449(2) / N12-C12-N13 / 118.1(2) / 119.2(1)
C15-C16 / 1.403(2) / 1.403(2) / N13-C14-C15 / 120.4(2) / 121.1(1)
C15-C110 / 1.401(2) / 1.405(2) / N13-C14-N14 / 117.3(2) / 116.4(2)
C16-C17 / 1.402(2) / 1.395(2) / N14-C14-C15 / 120.4(2) / 121.1(1)
C17-C18 / 1.376(2) / 1.371(3) / C14-C15-C110 / 124.9(2) / 125.0(2)
C18-C19 / 1.400(3) / 1.396(3) / C16-C17-C18 / 119.0(2) / 119.2(2)
C19-C110 / 1.383(2) / 1.365(3) / C15-C110-C19 / 120.2(2) / 120.2(2)
Angle / C17-C18-C19 / 121.1(2) / 120.8(2)
C12-N11-C16 / 121.3(2) / 121.2(1) / C18-C19-C110 / 119.9(2) / 120.5(2)