Study Guide 2- Reading Charts and Graphs

1. Mark recorded the weather in his town for a week. He wrote down his observations in the table below.

Temperature and Precipitation for the Week

Mon / Tue / Wed / Thu / Fri / Sat / Sun
High Temperature
(degrees C) / 21 / 24 / 19 / 18 / 25 / 26 / 22
Amount of Precipitation
(cm) / 0 / 3 / 4 / 0 / 0 / 0 / 0

Which of the following sentences best describes the pattern of how the weather changed over the course of the week?

/ A. / The weather changed in a repetitive pattern.
/ B. / The weather changed in an irregular pattern.
/ C. / The weather changed in a steady pattern.
/ D. / The weather did not change during the week.

2. Students measured the height of a newly planted daisy for several days to see what happened to the height. The results are as follows.

  • The first day the students measured the plant, it was 5 cm tall.
  • The second day the students measured the plant, it was 7 cm tall.
  • The third day the students measured the plant, it was 10 cm tall.
  • The fourth day the students measured the plant, it was 14 cm tall.
  • The fifth day the students measured the plant, it was 19 cm tall.

What will be the easiest way to see any pattern in these results?

/ A. / put the results on the chalkboard in large writing
/ B. / have the same student write the results every day
/ C. / put the results in a chart
/ D. / keep the results in your head

3. Daniel counted the number of dandelion plants in the school yard each month for four months. The data he collected is shown in the table.

Number of Dandelion Plants Over Time

Month / Number of Plants
March / 9
April / 14
May / 21
June / 35

Daniel is sharing his results with the class. He tells the class that the number of dandelion plants got bigger each month. But he also needs to tell the class why the number of dandelions was bigger.
How should Daniel explain why the number of dandelion plants kept getting bigger each month?

/ A. / Each dandelion plant produced seeds, which grew into new plants.
/ B. / In May, many students picked dandelion flowers for their mothers.
/ C. / Rabbits ate more dandelion plants in May than in March.
/ D. / The oak trees produced acorns, which grew into new dandelion plants.

4. Latoya collected data. She is making a pie chart to display the data.
Which kind of data did she most likely collect?

/ A. / how many miles her classmates live from school
/ B. / the percent of her classmates that ride the bus
/ C. / the number of students in her class
/ D. / how many inches her classmates have grown since school started

5. Martha measured her plant every 7 days and recorded the growth on the graph below.

How many centimeters did the plant grow between the day 21 and day 35?

/ A. / 14 cm
/ B. / 5 cm
/ C. / 10 cm
/ D. / 3 cm

6. Which is a way to collect data?

/ A. / draw a picture
/ B. / display data in a graph
/ C. / guess what will happen
/ D. / ask questions

7. Mr. Rodriguez asked his students to tell which is their favorite subject. He recorded the data in the tally chart below.

Favorite Subjects
Subject / Number
Music /
History /
Mathematics /
Writing /
Reading /
Science /

Based on this data, which is true?

/ A. / Fewest students like science best.
/ B. / More students like science best.
/ C. / Mr. Rodriguez is the science teacher.
/ D. / Science is taught in the morning.

8.Maribel is studying different kinds of pebbles she found in the park.
Eight pebbles are smooth with no speckles. Ten pebbles are not smooth, but have speckles. Four pebbles are smooth and have speckles.
Which diagram represents Maribel's data the best?


W. /
X.

Y. /
Z.
/ A. / Z
/ B. / W
/ C. / X
/ D. / Y

9. Jordan wanted to find out if different brands of microwave popcorn have the same number of unpopped kernels.
To find out, he popped 5 bags of Brand X popcorn and 5 bags of Brand Y popcorn. Then, he counted the number of unpopped kernels in each bag. He recorded his data in the table below.

What can Jordan determine by using this data?

/ A. / Brand X has fewer unpopped kernels.
/ B. / Popcorn costs a lot of money.
/ C. / Brand Y has fewer unpopped kernels.
/ D. / Popcorn is a great snack.

10. A new cat food was advertised to help cats lose weight. Joey wanted to do an experiment to see if the cat food worked on his pet cat. His cat weighed 10 lbs. at the beginning of the experiment. He weighed his cat every week for five weeks. Joey's data is shown below.

Week / Weight
0 / 10.0 lbs.
1 / 9.5 lbs.
2 / 8.0 lbs.
3 / 8.5 lbs.
4 / 7.0 lbs.
5 / 6.5 lbs

Joey wants to put this information into a graph. Which of the following graphs shows how Joey should organize his information?


W. /
X.

Y. /
Z.
/ A. / W
/ B. / Z
/ C. / X
/ D. / Y

Answers

1. B
2. C
3. A
4. B
5. D
6. D
7. B
8. C
9. A
10. D

Explanations

1. Patterns can often be found in data sets. The data set shown in the table has an irregular pattern, which means that it is not useful for making predictions about future conditions.
The pattern of weather over the course of a week often seems irregular because the weather changes from one day to the next. When you look at weather patterns over longer periods of time, however, they usually become more repetitive.

2. Putting the results in a chartwill make any pattern in the daisy's growth easier to see.

3. After data is collected during an investigation, scientists must try to explain the data. When an investigation involves observations of the natural world, the scientist must use knowledge of the natural world to form the explanation.
Daniel knows that dandelions are flowering plants that reproduce by forming seeds which are carried by the wind to a new location. The most likely cause for the increase in the number of dandelion plants, then, is that some of the seeds grew into new dandelion plants.

4. Bar graphs show how many of something. Line graphs show change over time. Pictographs are like bar graphs, but use pictures to show how many of something. Pie charts show parts of a whole.
Percents are parts of a whole. If Latoya made a pie chart, she is showing percents. The percent of students who ride the bus would be displayed in a pie chart.

5. The plant was 11 cm tall on day 21. It was 14 cm tall on day 35. Between the day 21 and day 35, the plant grew 3 cm.

6. Before you can make a picture or graph to show data, you must first collect the data.
There are many ways to collect data. Asking questions is one way. Observing and measuring are other ways.

7. Twelve students said science is their favorite subject. More students chose science as their favorite than any of the other subjects. The data does not show when they learn science. It does not tell who their science teacher is.

8. A Venn diagram is an excellent tool for comparing traits of objects. In this case, there are two traits, represented by two circles: Smooth and Speckled. The circles overlap each other.
The number "8" goes in the non-overlapping part of the "Smooth" circle (since there are 8 pebbles that are smooth only). The number "10" goes in the non-overlapping part of the "Speckled" circle (since there are 10 pebbles that are speckled only). The number "4" goes where the "Smooth" and "Speckled" circles overlap (since there are 4 pebbles that are both smooth and speckled). This is shown in diagramX.

9. Based on the data, Jordan could determine that Brand X had fewer unpopped kernels.
He cannot use the data in the table to tell whether or not popcorn is a good snack. He also cannot use the data in the table to tell whether or not popcorn costs a lot of money.

10. In a correct graph, the independent variable is written on the x-axis, and the dependent variable is on the y-axis. Since the number of weeks is changed by the person doing the experiment, it is the independent variable. The weight of the cat depends on the number of weeks, so weight is the dependent variable.
The numbers on the x-axis and y-axis do not have to be the same, but each axis should have evenly plotted numbers.
In order to put his information into a correct graph, Joey should use graph Y.
The other graphs are incorrect because:

  • Graph X has incorrectly labelled axes, with the independent and dependent variables switched.
  • Graph Wis missing the first data point and does not go high enough on the y-axis to show all of the information.
  • Graph Z has inconsistent numbering on the y-axis (goes from 0 to 6.5, and 7.0 to 8.0).