Table 1. Detection of circulating nucleic acids and its alterations in plasma and serum of patients with breast cancer

Number of patients / Nucleic acids / Methods / Clinical relevance / Reference
/

cfDNA

61 M0,

33 benign

/

DNA quantification

/ qPCR / Diagnosis / [1]

64 M0

/

DNA quantification

/ qPCR / DTC status / [2]

83 M0

/

DNA integrity

/ qPCR / Lymph node metastases / [3]

73 M0

/

DNA integrity

/ qPCR / Therapy / [4]

61 M0

/

Microsatellite alterations

/ fPCR / Diagnosis / [5]

81 M0

/

Microsatellite alterations

/ fPCR / Diagnosis, prognosis / [6]

388 M0

/

Microsatellite alterations

/ fPCR / Diagnosis, prognosis / [7]

147 M0

/

Microsatellite alterations

/ fPCR / Prognosis / [8]

40 M0,

48 M1

/

Microsatellite alterations

/ fPCR / Diagnosis, lymph node metastases / [9]

102 M0,

32 benign

/

Microsatellite alterations

/ PCR / Prognosis, lymphatic tumor cell spread / [10]

30 M0,

46 M1

/

PIK3CA mutation

/ ARMS / Diagnosis / [11]

126 M0

/

P53 mutation

/ PCR-SSCP / Prognosis / [12]

30 M1

/

Mutations

/ Sequencing / Metastases / [13]

88 M0,

30 M1

/

Her2 amplification

/ qPCR / Diagnosis / [14]

50 M0,

15 M1

/

Her2 amplification

/ qPCR / Therapy / [15]

65 M0

/

SNP/CNV

/ Array / Diagnosis, dormancy / [16]

61 M0

/

Methylation

/ MSP / Diagnosis / [17]

38 M0

/

Methylation

/ MSP / Diagnosis / [18]

20 M0,

15 benign

/

Methylation

/ MSP / Diagnosis / [19]

250 M0, 59 benign

/

Methylation

/ MSP / Diagnosis / [20]

150 M0,

46 M1

/

Methylation

/ MSP / Diagnosis / [21]

39 M0

/

Methylation

/ MethyLight PCR / Diagnosis / [22]

22 M0

/

Methylation

/ MALDI-TOF MS / Diagnosis / [23]

101 M0,

58 M1

/

Methylation

/ OS-MSP / Diagnosis / [24]

100 M0

/

Methylation

/ MSP / Diagnosis, prognosis / [25]

26 M0,

10 M1

/

Methylation

/ MethyLight PCR / Prognosis / [26]

428 M0

/

Methylation

/ MethyLight PCR / Prognosis / [27]

336 M0

/

Methylation

/ OS-MSP / Prognosis / [28]

20 M0

/

Methylation

/ MethDet-56 / Surgery, therapy / [29]

52 M0

/

Methylation

/ MSP / Therapy / [30]

148 M0

/ Methylation / MethyLight PCR / Therapy / [31]

80 M1

/ Methylation / MSP / CTC status / [32]

79 M0

/ Methylation / MSP / CTC status / [33]

85 M0

/ Methylation / MethyLight PCR / CTC status / [34]

52 M0,

26 benign

/

Mitochondrial

/ qPCR / Diagnosis / [35]
/ Cell-free nucleosomes

31 M0,

32 M1,

20 benign

/

DNA, nucleosomes, protease activities

/ PicoGreen, ELISA / Cancer progression / [36]

125 M0,

11 benign

/

Nucleosomes

/ ELISA / Diagnosis, therapy / [37]

15 M0

/

Histone modifications

/ ChIP / Diagnosis / [38]
/ cfRNA

24 M0,

16 M1,

25 benign

/

Mammaglobin

/ RT-PCR / Diagnosis, metastases / [39]

129 M0

/

Cyclin D1

/ RT-PCR / Prognosis, predictive / [40]
/

microRNAs

100 M0

/

miR-92a, miR-21

/ qPCR / Diagnosis / [41]

103 M0

/

miR-155

/ qPCR / Diagnosis / [42]

20 M0

/

miR-155, miR-205

/ qPCR / Diagnosis / [43]

20 M0

/

miR-708*, miR-92b*, miR-568

/ qPCR / Diagnosis / [44]

61 M0

/

miR-10b, miR-21, miR-125b, miR-145, miR-155 miR-191, miR-382

/ qPCR / Diagnosis / [45]

170 M0

/

miR-145, miR-451

/ qPCR / Diagnosis / [46]

127 M0

/

miR-148b, miR-376c, miR-409-3p, miR-801

/ qPCR / Diagnosis / [47]

48 M0

/

miR-202, miR-718

/ qPCR / Diagnosis / [48]

102 M0

/

miR-21

/ qPCR / Diagnosis, prognosis / [49]

102 M0,

32 benign

/

miR-214

/ qPCR / Diagnosis, lymph node metastases / [50]

60 M0

/

miR-10b, miR-373

/ qPCR / Diagnosis, lymph node metastases / [51]

59 M0,

30 M1

/

miR10b, miR34a, miR141, miR155

/ qPCR / Diagnosis, metastases / [52]

59 M0,

16 M1

/

miR-215, miR-299-5p, miR-411, and miR-452

/ qPCR / Diagnosis, metastases / [53]

100 M0,

22 M1

/

miR-10b

/ qPCR / Metastases / [54]

193 M1

/

miR-141, miR-200a, miR-200b, miR-200c, miR-203, miR-210,

miR-375, miR-768-3p

/ qPCR / Prognosis, CTC status / [55]

56 M0

/

miR-125b

/ qPCR / Therapy / [56]

43 M0

/

miR-210

/ qPCR / Therapy, lymph node metastases / [57]

This table represents different forms of cell-free nucleic acids that have been detected in plasma or serum of patients with breast cancer. This table is not meant to be comprehensive and is based on my own view of studies that offer substantial clinical insight. ARMS, amplification refractory mutation system allele-specific polymerase chain reaction; cfDNA, cell-free DNA; ChIP, chromatin-immunoprecipitation; CNV, copy number variation; CTC, circulating tumor cell; DTC, disseminated tumor cell; ELISA, enzyme-linked immunosorbent assay; fPCR, fluorescence-based microsatellite polymerase chain reaction; M0, patients with primary breast cancer; M1, patients with metastatic breast cancer; MALDI-TOF MS, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; MSP, methylation-specific polymerase chain reaction; OS-MSP, one-step methylation-specific polymerase chain reaction; PCR, polymerase chain reaction; PCR-SSCP, polymerase chain reaction-single strand conformation polymorphism; PIK3CA, class I phosphatidylinositol-3 kinase (PI3K) catalytic subunit; qPCR, quantitative real-time polymerase chain reaction; RT-PCR, reverse transcription-polymerase chain reaction; SNP, single-nucleotide polymorphism.

References{Level 1 heading}

1. Huang ZH, Li LH, Hua D: Quantitative analysis of plasma circulating DNA at diagnosis and during follow-up of breast cancer patients. Cancer Lett 2006, 243:64-70.

2. Payne RE, Hava NL, Page K, Blighe K, Ward B, Slade M, Brown J, Guttery DS, Zaidi SA, Stebbing J, Jacob J, Yagüe E, Shaw JA, Coombes RC: The presence of disseminated tumour cells in the bone marrow is inversely related to circulating free DNA in plasma in breast cancer dormancy. Br J Cancer 2012, 106:375-382.

3. Umetani N, Giuliano AE, Hiramatsu SH, Amersi F, Nakagawa T, Martino S, Hoon DS: Prediction of breast tumor progression by integrity of free circulating DNA in serum. J Clin Oncol 2006, 24:4270-4276.

4. Deligezer U, Eralp Y, Akisik EE, Akisik EZ, Saip P, Topuz E, Dalay N: Size distribution of circulating cell-free DNA in sera of breast cancer patients in the course of adjuvant chemotherapy. Clin Chem Lab Med 2008, 46:311-317.

5. Chen X, Bonnefoi H, Diebold-Berger S, Lyautey J, Lederrey C, Faltin-Traub E, Stroun M, Anker P: Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clin Cancer Res 1999, 5:2297-2303.

6. Schwarzenbach H, Pantel K, Kemper B, Beeger C, Otterbach F, Kimmig R, Kasimir-Bauer S: Comparative evaluation of cell-free tumor DNA in blood and disseminated tumor cells in bone marrow of patients with primary breast cancer. Breast Cancer Res 2009, 11:R71.

7. Schwarzenbach H, Eichelser C, Kropidlowski J, Janni W, Rack B, Pantel K: Loss of heterozygosity at tumor suppressor genes detectable on fractionated circulating cell-free tumor DNA as indicator of breast cancer progression. Clin Cancer Res 2012, 18:5719-5730.

8. Silva JM, Silva J, Sanchez A, Garcia JM, Dominguez G, Provencio M, Sanfrutos L, Jareño E, Colas A, España P, Bonilla F: Tumor DNA in plasma at diagnosis of breast cancer patients is a valuable predictor of disease-free survival. Clin Cancer Res 2002, 8:3761-3766.

9. Schwarzenbach H, Muller V, Beeger C, Gottberg M, Stahmann N, Pantel K: A critical evaluation of loss of heterozygosity detected in tumor tissues, blood serum and bone marrow plasma from patients with breast cancer. Breast Cancer Res 2007, 9:R66.

10. Schwarzenbach H, Muller V, Milde-Langosch K, Steinbach B, Pantel K: Evaluation of cell-free tumour DNA and RNA in patients with breast cancer and benign breast disease. Mol Biosyst 2011, 7:2848-2854.

11. Board RE, Wardley AM, Dixon JM, Armstrong AC, Howell S, Renshaw L, Donald E, Greystoke A, Ranson M, Hughes A, Dive C: Detection of PIK3CA mutations in circulating free DNA in patients with breast cancer. Breast Cancer Res Treat 2010, 120:461-467.

12. Shao ZM, Wu J, Shen ZZ, Nguyen M: p53 mutation in plasma DNA and its prognostic value in breast cancer patients. Clin Cancer Res 2001, 7:2222-2227.

13. Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B, Rajan S, Humphray S, Becq J, Halsall D, Wallis M, Bentley D, Caldas C, Rosenfeld N: Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 2013, 368:1199-1209.

14. Page K, Hava N, Ward B, Brown J, Guttery DS, Ruangpratheep C, Blighe K, Sharma A, Walker RA, Coombes RC, Shaw JA: Detection of HER2 amplification in circulating free DNA in patients with breast cancer. Br J Cancer 2011, 104:1342-1348.

15. Bechmann T, Andersen RF, Pallisgaard N, Madsen JS, Maae E, Jakobsen EH, Bak Jylling AM, Steffensen KD, Jakobsen A: Plasma HER2 amplification in cell-free DNA during neoadjuvant chemotherapy in breast cancer. J Cancer Res Clin Oncol 2013, 139:995-1003.

16. Shaw JA, Page K, Blighe K, Hava N, Guttery D, Ward B, Brown J, Ruangpratheep C, Stebbing J, Payne R, Palmieri C, Cleator S, Walker RA, Coombes RC: Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Res 2012, 22:220-231.

17. Yazici H, Terry MB, Cho YH, Senie RT, Liao Y, Andrulis I, Santella RM: Aberrant methylation of RASSF1A in plasma DNA before breast cancer diagnosis in the Breast Cancer Family Registry. Cancer Epidemiol Biomarkers Prev 2009, 18:2723-2725.

18. Jing F, Zhang J, Tao J, Zhou Y, Jun L, Tang X, Wang Y, Hai H: Hypermethylation of tumor suppressor genes BRCA1, p16 and 14-3-3sigma in serum of sporadic breast cancer patients. Onkologie 2007, 30:14-19.

19. Skvortsova TE, Rykova EY, Tamkovich SN, Bryzgunova OE, Starikov AV, Kuznetsova NP, Vlassov VV, Laktionov PP: Cell-free and cell-bound circulating DNA in breast tumours: DNA quantification and analysis of tumour-related gene methylation. Br J Cancer 2006, 94:1492-1495.

20. Kloten V, Becker B, Winner K, Schrauder MG, Fasching PA, Anzeneder T, Veeck J, Hartmann A, Knuchel R, Dahl E: Promoter hypermethylation of the tumor-suppressor genes ITIH5, DKK3, and RASSF1A as novel biomarkers for blood-based breast cancer screening. Breast Cancer Res 2013, 15:R4.

21. Chimonidou M, Tzitzira A, Strati A, Sotiropoulou G, Sfikas C, Malamos N, Georgoulias V, Lianidou E: CST6 promoter methylation in circulating cell-free DNA of breast cancer patients. Clin Biochem 2013, 46:235-240.

22. Agostini M, Enzo MV, Bedin C, Belardinelli V, Goldin E, Del Bianco P, Maschietto E, D’Angelo E, Izzi L, Saccani A, Zavagno G, Nitti D: Circulating cell-free DNA: a promising marker of regional lymph node metastasis in breast cancer patients. Cancer Biomark 2012, 11:89-98.

23. Radpour R, Barekati Z, Kohler C, Lv Q, Burki N, Diesch C, Bitzer J, Zheng H, Schmid S, Zhong XY: Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. PLoS One 2011, 6:e16080.

24. Yamamoto N, Nakayama T, Kajita M, Miyake T, Iwamoto T, Kim SJ, Sakai A, Ishihara H, Tamaki Y, Noguchi S: Detection of aberrant promoter methylation of GSTP1, RASSF1A, and RARbeta2 in serum DNA of patients with breast cancer by a newly established one-step methylation-specific PCR assay. Breast Cancer Res Treat 2012, 132:165-173.

25. Mirza S, Sharma G, Parshad R, Srivastava A, Gupta SD, Ralhan R: Clinical significance of promoter hypermethylation of ERbeta and RARbeta2 in tumor and serum DNA in Indian breast cancer patients. Ann Surg Oncol 2012, 19:3107-3115.

26. Muller HM, Widschwendter A, Fiegl H, Ivarsson L, Goebel G, Perkmann E, Marth C, Widschwendter M: DNA methylation in serum of breast cancer patients: an independent prognostic marker. Cancer Res 2003, 63:7641-7645.

27. Gobel G, Auer D, Gaugg I, Schneitter A, Lesche R, Muller-Holzner E, Marth C, Daxenbichler G: Prognostic significance of methylated RASSF1A and PITX2 genes in blood- and bone marrow plasma of breast cancer patients. Breast Cancer Res Treat 2011, 130:109-117.

28. Fujita N, Nakayama T, Yamamoto N, Kim SJ, Shimazu K, Shimomura A, Maruyama N, Morimoto K, Tamaki Y, Noguchi S: Methylated DNA and total DNA in serum detected by one-step methylation-specific PCR is predictive of poor prognosis for breast cancer patients. Oncology 2012, 83:273-282.

29. Liggett TE, Melnikov AA, Marks JR, Levenson VV: Methylation patterns in cell-free plasma DNA reflect removal of the primary tumor and drug treatment of breast cancer patients. Int J Cancer 2011, 128:492-499.

30. Avraham A, Uhlmann R, Shperber A, Birnbaum M, Sandbank J, Sella A, Sukumar S, Evron E: Serum DNA methylation for monitoring response to neoadjuvant chemotherapy in breast cancer patients. Int J Cancer 2012, 131:E1166-1172.

31. Fiegl H, Millinger S, Mueller-Holzner E, Marth C, Ensinger C, Berger A, Klocker H, Goebel G, Widschwendter M: Circulating tumor-specific DNA: a marker for monitoring efficacy of adjuvant therapy in cancer patients. Cancer Res 2005, 65:1141-1145.

32. Van der Auwera I, Elst HJ, Van Laere SJ, Maes H, Huget P, van Dam P, Van Marck EA, Vermeulen PB, Dirix LY: The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. Br J Cancer 2009, 100:1277-1286.

33. Chimonidou M, Strati A, Malamos N, Georgoulias V, Lianidou ES: SOX17 promoter methylation in circulating tumor cells and matched cell-free DNA isolated from plasma of patients with breast cancer. Clin Chem 2012, 59:270-279.

34. Matuschek C, Bölke E, Lammering G, Gerber PA, Peiper M, Budach W, Taskin H, Prisack HB, Schieren G, Orth K, Bojar H: Methylated APC and GSTP1 genes in serum DNA correlate with the presence of circulating blood tumor cells and are associated with a more aggressive and advanced breast cancer disease. Eur J Med Res 2010, 15:277-286.

35. Kohler C, Radpour R, Barekati Z, Asadollahi R, Bitzer J, Wight E, Burki N, Diesch C, Holzgreve W, Zhong XY: Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors. Mol Cancer 2009, 8:105.

36. Roth C, Pantel K, Muller V, Rack B, Kasimir-Bauer S, Janni W, Schwarzenbach H: Apoptosis-related deregulation of proteolytic activities and high serum levels of circulating nucleosomes and DNA in blood correlate with breast cancer progression. BMC Cancer 2011, 11:4.