Edwards:SIR2 1

SIR2 Saccharomyces cerevisiae in Tetrahymena thermophila: The Mystery of Aging

Emily Edwards

Katelyn Carter

December 2, 2008

BMS 110 Fall 2008

Abstract

For these experiments, the SIR2 gene is focused on because of its implications on aging and lifespan. By the suppression of the formation of ERCs, part of the aging process, and the production of enzymes, which limit lifespan, that play a role in cell death, the possibility of a longer and “younger” life could become a reality due to further research on this gene. SIR2 research has been found to have dramatic results in yeast and has some possible mammalian applications (Kaeberlein et al 1999). After under going isolation, quantification, and PCR, the SIR2 gene will be encoded in E. coli to be stored for use in further studies on the gene. It is hoped that these further studies will uncover valuable data for innovative applications to extend lifespan and slow the aging process.

Introduction

In these experiments, the SIR2 gene is focused on due to its connections with aging and longevity. After a lot of research in direct affects on yeast, there are believed to be some mammalian applications in the possibility of extending lifespan and slowing aging (Kaeberlein et al 1999). The role of SIR2 in extending life span involves preventing recombination at the replication forks in the rDNA which suppresses the formation of extrachromosomal rDNA circles (ERCs) and other enzymes that aid in cell death (Kaeberlein et al 1999 and Li et al 2006). When overactive, SIR2 dramatically extended the lifespan of yeast, by as much as 30% in some instances. In aging, Sir2p acts as a limiting component, so when increased, the aging process slowed dramatically (Kaeberlein et al 1999 and Lin et al 2000). This obviously has many innovative possibilities and applications. The implications of longer life and more youthful living are very exciting, motivating, and mind-boggling to young scientists such as ourselves! First, SIR2 will be isolated, quantified, and put through PCR. The SIR2 gene will then be cloned into E. coli, so that those E. coli colonies can be stored for use by other scientists for future studies on SIR2. The success of this experiment we hope will lead to future studies because this research could affect everyone and how we live.

Materials and Methods

Bioinformatics

The amino acid sequence for the SIR2 protein in Saccharomyces cerevisiae was found through the use of the NCBI database ( Next, databases were searched to see if there was a Tetrahymena homolog or not, for SIR2. One was confirmed through the use of the Tetrahymena Genome Database ( Continuing to use the Tetrahymena Genome Database, the protein sequence of the Tetrahymena homolog was obtained. Then, the nucleotide sequence of the SIR2 homolog was determined as well as with the Expressed Sequence Tags underlined. Next, it was determined that the gene’s start and stop introns were not encompassed by the ESTs, and therefore, the gene had been predicted correctly. For further details see Lab 3: Bioinformatics: Molecular Computational Tools(Smith 2008).

Tetrahymena Genomic DNA Isolation

The Tetrahymena genomic DNA was isolated to use as a template for further applications, such as PCR. During the isolation procedure, 1.4 mL of a Tetrahymena culture was placed into a microcentrifuge tube. The tube was placed into a microcentrifuge for 1 minute at 10,000 rpm so that the cells could be collected, and then the supernatant was quickly poured off and the tube given a quick shake to get off residual media. The tube was then flicked to loosen the pellet of cells from the bottom, and 700 μL of Urea Lysis buffer were added and thoroughly mixed in the tube. Then phenol extraction was done by adding 600 μL of a phenol:chloroform (1:1) mixture in the hood, thoroughly mixing the tube, centrifuging the tube for 5 minutes at maximum speed in a microcentrifuge, and then transferring the top layer in the tube into a new microcentrifuge tube. The phenol extraction was repeated again. Next, 150 μL of 5M NaCl was added to the extracted lysate. 700 μL of isopropyl alcohol was added to the lysate to precipitate the DNA; the tube was inverted about 10 times and was allowed to rest for 10 minutes at room temperature. The precipitate was then collected by centrifuging the mixture at maximum speed for 10 minutes, and the supernant was decanted. 500 μL of 70% ethanol were added, and the tube was flicked to loosen the pellet from the bottom. The precipitate was then collected by centrifuging for 3 minutes, and the supernant was discarded by removal by micropipette. The pellet was allowed to air dry, 50 μL of Tris-EDTA (TE) buffer and 1 μL of RNase A (10 mg/mL stock) were added, and was incubated at 37˚C for 10 minutes.

Solutions

Lysis Buffer: 0.35 M NaCl, 0.01 M Tris pH 7.4, 0.01 M EDTA, 1% SDS, 42% urea

TE (pH 8): 10 mM Tris-Cl (pH 8), 1 mM Na2 EDTA

RNase A stock solution: 10 mg/mL in 50mM potassium acetate (pH 5.5)

See LAB Exercise 4: Tetrahymena Genomic DNA Isolation for more information (Smith 2008).

Quantification of Genomic DNA

Two dilutions of DNA, 1:100 and 1:200, were prepared in microcentrifuge tubes and were then placed into a spectrophotometer, as the UV source, for 15 minutes using the nucleic acid quantitation program. The Absorbance readings at 260nm and 280 nm were recorded for both dilutions. See LAB Exercise 4: Tetrahymena Genomic DNA Isolation for further details (Smith 2008).

Polymerase Chain Reaction (PCR)

PCR was used to copy SIR2 from our DNA to a large amount in a short amount of time. The following substances were used and added for PCR:

Reaction #

/ Primer Annealing
Temperature /

Temperature

Used
1 / genomic template / 56.45˚C / 56.2˚C
2 / genomic template / 60.6˚C / 60.0˚C
3 / genomic template / 52.3˚C / 52.1˚C
4 / genomic template / 50.0˚C / 50.0˚C
5 / genomic template / 52.3˚C / 52.1˚C
Final Concentration / Stock Concentration / Master Mix
1.0 μL total genomic DNA / 0.3 μL / 3.32 mg/μL / 9 μL
0.5 μM TF / 1.25 μL / 20 μL / 3.75 μL
0.5 μM TR / 1.25 μL / 20 μL / 3.75 μL
1 unit (U) Phusion polymerase / 0.5 μL / 2 U/μL / 1.5 μL
1X HF or GC buffer (1.5 mM MgCl2) / 10 μL / 5X concentrated / 30 μL
0.2 mM dNTPs / 1 μL / 10mM / 3 μL
sterile distilled water / 33 μL / 99 μL

FINAL VOLUME: 50 μL150 μL

PRIMERS

THD15-TF (36-mer; TM=58°C)

5’-cac cct cga gca ttt aaa aac act ctt caa atc att-3’

THD15-TR (35-mer; TM=62°C)

5’-cct agg tca att tat gta atc aat aat tta ttt ag-3’

The oligonucleotide primers were designed using the compiled Bioinformatics data and the genomic DNA as a template. Before the primers were added to the master mix, they were resuspended in ddH2O with a final concentration of 200μM, made with 20μM concentrated stock, and vortexed. The reactions were kept on ice until placed in the thermocycler to undergo denaturation, annealing, extension, and cycling of the reaction. For the complete protocol see LAB Exercise 5: Polymerase Chain Reaction (PCR)(Smith 2008).

Agarose Gel Electrophoresis

A 1% agarose gel mixture, consisting of 0.5g of agarose and 50 mL of 1X TAE, was microwaved until the agarose was dissolved, allowed to cool slightly, then 0.5 μL of 10 mg/mL of ethidium bromide were added, and, lastly, poured into a gel apparatus and allowed to setup (done by Dr. Smith). The casting tray was removed, the comb was removed, and the electrophoresis chamber was filled with 1X TAE until the wells were just covered.

5 μL of 1kb ladder and 1 μL of dye, xylene cyanol-blue and bromphenol blue-purple, were loaded in the first well/lane. A mixture of 1μL of dye and 10 μL of each of our five samples from PCR, individually, were loaded into the next five wells/lanes. The apparatus was then connect to the power source and ran at 90 volts for about 1 hour, so that the dyes migrated through the gel would run ¾ way and the results of the experiment could be viewed. The gel was then removed from the apparatus and photographed using a UV light box and camera. For more information see Lab Exercise 6: Agarose Gel Electrophoresis(Smith 2008).

TOPO Cloning and E. coli Transformation

The following components were combined to carry out the TOPO cloning for a total volume of 6L: 1L of PCR product, 1L of salt solution, 3L of sterile water, and 1L of the TOPO vector. The reaction was then mixed gently by pipetting up and down. The solution was then incubated for 10 minutes at room temperature, approximately 22-23˚C.

The lab instructor then provided a vial of chemically competent E. coli, so that the E. coli transformation could be performed. Ask your lab instructor for a vial of chemically competent E. coli. The cells were thawed on ice for about 5 minutes. Then, 2 μL of the TOPO cloning reaction were added into the vial of E. coli and mixed gently by stirring the solution with the tip of the micropipette. The solution was incubated on ice for 10 minutes, before being heat-shocked for 30 seconds at 42˚C carefully without being shaken. The solution was then immediately put on ice. Next, 250μL of room temperature SOC medium were added. The tube of solution was then shaken horizontally in a shaking incubator at 200 rpm at 37˚C for 1 hour. Lastly, 200μL of the solution were spread, with sterile glass beads, on a pre-warmed plate containing 50μg/mL kanamycin and then allowed to incubate overnight in an incubator at 37ºC. The same was done with the approximately 50μL that was extra solution left over after the 200μL were used. See Lab Exercise 7c: TOPO Cloning and E. coli Transformation for further information (Smith 2008).

Construction of Plasmid Map and Restriction Enzyme Digestion Design

To be able to visually locate restriction enzymes needed for a later part of the project, we created maps of our plasmid using Gene Construction Kit 3.0 computer program. We were also able to see how the ends of the DNA fit together to make our plasmid. Using a computerized plasmid mapping system allows scientists to exchange this information quickly, and it can be easily stored. Also, using the program, we were able to input restriction enzymes, that we could purchase, to show up so that the largest section of the part of our gene that we needed was enclosed by it. The restriction enzyme that we selected was NheI.

Plasmid Purification and Restriction Enzyme Digest

To determine if the colonies that grew on our plate contains the plasmid containing our PCR product, we had to isolate the plasmid and confirm that it was the correct plasmid. To do this, we started off by growing the bacteria. 6 ml of the lysis buffer (LB) were added with 50µg/ml of kanamycin (KAN) in a glass test tube for each colony, and we each had 3 colonies for a total of 6 tubes. This section (growing the bacteria) was done by the instructor. Next, a grid was made on a new LB/KAN plate with six regions. A 6-inch, sterile wooden stick was used to pick whole colonies from our cloning transformation plate, and each was touched to a corresponding region on the grid, with a total of six colonies used. Then, the remaining material on the stick was mixed in LB/KAN liquid in a test tube, and the stick was placed in a container to be sterilized and reused. The test tubes were placed in a 37°C shaking incubator at 200 rpm and grown overnight.

The second phase is the purification of the plasmid, beginning with getting three 1.5-mL tubes for each of the 6 cultures. 5mL of each culture were pipetted into each of the corresponding new tubes, leaving about 1mL in the culture tube, which was saved to freeze down the bacterial strain of positive transformants. The each of the six sets of three tubes was centrifuged at maximum speed for 3 minutes. The resulting supernatant was poured off into a waste beaker. 250μL of the P1 buffer were added to one of each set of the three tubes. The pellet in each of those tubes was then resuspended by pipetting up and down slowly, and that solution was then transferred into the second tube in each set of three and resuspended by pipetting. Then, that was transferred to the third tube and resuspended by pipetting. 250μL of the P2 buffer were added, and then the tubes were inverted. The solutions then turned blue. The tubes were continuously inverted, for about 1-2 minutes, until the entire solution was blue and there was no precipitate present. Then 350μL of the N3 buffer were added, and the tubes were inverted until the solution had turned completely clear, with no traces of blue left. The samples were then centrifuged at maximum speed for 10 minutes. The resulting supernatant was then poured into QIAprep spin columns, which were then centrifuged at maximum speed for 1 minutes, and the flow-through was discarded. Next, 500μL of the PB buffer were added to the columns, centrifuged for 1 minute at maximum speed, and the flow-through was discarded. 750μL of the PE buffer were then added to the columns, centrifuged for 1 minute at maximum speed, and the flow-through was discarded. The columns were then centrifuged an additional minute to remove the residual buffer. The columns were placed into new 1.5mL tubes, and the plasmid DNA was eluted by adding 50μL of the Elution Buffer. The solutions were let stand for 2 minutes and then centrifuged at maximum speed for 1 minute. The columns were then discarded. The tubes were then labeled properly, placed on ice, and stored at -20°C. The tubes were ready to be used to screen for our PCR product using the previously selected restriction enzyme, NheI.

The third phase was the confirmation of the correct plasmid with the PCR product insertion by restriction enzyme digestion. With help from the instructor and a handout from the company through which the restriction enzyme was purchased containing information about the corresponding restriction buffer to use with our enzyme, we determined the appropriate restriction buffers, 10X NE Buffer 2 and 100XBSA, to be used in the digest. The following were combined to make a cocktail for each digest: 14μL of the 1X NE Buffer 2, 35μL of the 1X BSA, 3.5 of the NheI, and 73.5μL of sterile water for a total of 126μL, 18μL for each of the 7 tubes. So, 18μL of the cocktail and 2μL of the purified plasmid samples were added to seven new tubes and were mixed by pipetting. The new solutions were then incubated at 37°C for 1hour, after which 1μL of 10X sample dye was added to each. They were then run on a gel in hopes of getting the two predicted bands from the restriction enzyme digestion design at 2572 and 886 base pairs.

Results

Bioinformatics

caccctcgagcatttaaaaacactcttcaaatcattaattactccaagtaagtaaattactttgagaatatctaacgtatagccagttatcaacagtattaaattcgattaaacaaatcatagtatacataactcaatctcacatgaagtataggacagatctcaaataattgagaattttgctgagaagttgttagcaaaaaaatataaatagatagctttcttgacaggagcaggaattagtgtaagtgctggaattccagattttagatctcctgaaactgggctttacgcctaaataaaaaaagaatatgacataagtgatccttaaaaaatattttcaattagatattatcaagataatcctttgccttttatgcaagttattagagatttcttttcaagagaatatcacccaacttatgctcataagttaatccattaaatctacaaaagaaaacaactattaataaatataacctaaaatattgatggcttagagttaaaaacagggattaatccctcaaaagtagtctaagcacatggacatatgagaaaggctcattgtgtgaattgcaatcatattgtcaatattgaaacttacttacaaaactgcaaacagttaaaaaaaacctaatgccccatttgcaataatttagtgaagccaaaagtaattttatttctttgtttaaattttaattgtaatgctagcaaaaatataggaaataaaaattagaaattattggcacaattagttgaaaaaaataaatattttaaatttcaatcaaaaatatttattgagaatcaactttatttattattgaaatttatcagttagtttccatatcataaattttttatatttataaaaataaaagattgttttctttggagagtttcttcctaatgagttttattagtctagagatattttgccaaattcagattgtgtggttgttatgggaacatctttaggtgtctttccatttgctaatttaataaacgaagtaggtacttctgttccaatatatataataaacaataaacttcctaaaaatataagtcatcttaaaaatcaaattgaatttatataaggagatatcaatgaaatttctaaataaattattgattacataaattgacctagg

For the Bioinformatics part of this project, we were able to find the genomic sequence of Tetrahymena thermophilia that we needed, which allowed us to continue to the PCR experiment. The highlighted section in Figure 1, was vital to being able to perform the PCR portion that was to follow the Bioinformatics. So, this portion of the project allowed us to continue further and was successful.

Quantification of Genomic DNA

A260 / 0.332 / 1:200
A280 / 0.180 / 1:200
DNA Concentration / 3.32 μg/μL
Purity / 1.844

Table 1. After quantifying our DNA, our 1:200 numbers

were the best, so we used those. We calculated the DNA concentration

by multiplying 50μg by the A260 reading by the 200 concentration, then dividing that by 1000μL. We calculated the purity to be 1.844 by dividing the Absorbance 260 nm by the Absorbance 280nm.

DNA is supposed to have a purity of 1.8, so we were successful in purifying our DNA. The calculation of the DNA concentration gave us the needed information to determine how much DNA was needed for PCR.

(PCR) Polymerase Chain Reaction

The PCR was successful, so we were able to move on to the agarose gel electrophoresis.

Agarose Gel Electrophoresis

Three out of the five samples ran as predicted. The other two did not appear at all. Temperature did not seem to have any affect on the experiment because the two highest and one of the lower annealing temperatures had bands. The product in lane 5 was the product that we chose to continue using for the rest of the experiments. This part of the experiment was completely successful, with no primer dimers and three good products.

TOPO Cloning and E. coli Transformation

Our Samples

200μL / 9 colonies
Extra / 0 colonies

Negative Control

200μL / 16 colonies
Extra / 2 colonies

Table 2. This portion of the project turned out

to be unsuccessful. To make up for this loss, we used

the other SIR2 group’s colonies to continue.

The numbers speak for themselves, this part of the project failed. The negative control had more colonies than did our plates. So, to continue on we had to use colonies from the other SIR2 group. The other SIR2 group had almost 200 colonies on their 200μL plate, which is what we picked colonies from for the further experiments.

Construction of Plasmid Map and Restriction Enzyme Digestion Design

Figure 3. The black regions are the introns. The restriction enzyme that is boxed in red, NheI, was the enzyme we had to use, because it was the only one that appeared more than once and contained the largest part of the gene which is the section containing the green ending with the red points.