Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils

Nora B. Sutton1*, Alette A.M. Langenhoff2,4, Daniel Hidalgo Lasso1, Bas van der Zaan2, Pauline van Gaans2, Farai Maphosa3, Hauke Smidt3, Tim Grotenhuis1 and Huub H.M. Rijnaarts1.

1 Department of Environmental Technology, Wageningen University, PO Box 17, 6700 EV Wageningen, The Netherlands

2 Subsurface and Groundwater Systems, Deltares, P.O. Box 85467, 3508 AL Utrecht, The Netherlands

3 Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands

4 Current address: Department of Environmental Technology, Wageningen University, PO Box 17, 6700 EV Wageningen, The Netherlands

*Corresponding Author:

Table S1. Accession numbers, treatments, and phylogenetic identification of DGGE bands sequenced in this study. Treatments and timing are as in Tables 2 and 3 and Figure 3.

Accession Number / Code / Soil Type / Treatment / Length of Incubation (weeks) / Phylogenetic identification
KC841278 / P-PM-4-a / peat / PM / 4 / Gammaproteobacteria
KC841279 / P-PM-4-b / peat / PM / 4 / Alphaproteobacteria
KC841280 / P-PM-4-c / peat / PM / 4 / Alphaproteobacteria
KC841281 / P-PS-4-a / peat / PS / 4 / Alphaproteobacteria
KC841282 / F-BC-1-a / fill / BC / 1 / Betaproteobacteria
KC841283 / F-BC-1-b / fill / BC / 1 / Gammaproteobacteria
KC841284 / F-BC-1-c / fill / BC / 1 / Betaproteobacteria
KC841285 / F-BC-2-a / fill / BC / 2 / Alphaproteobacteria
KC841286 / F-BC-2-b / fill / BC / 2 / Gammaproteobacteria
KC841287 / F-MFR-4-a / fill / MFR / 4 / Gammaproteobacteria
KC841288 / F-MFR-8-a / fill / MFR / 8 / Chlamydiae
KC841289 / F-MFR-8-b / fill / MFR / 8 / Deltaproteobacteria
KC841290 / F-MFR-8-c / fill / MFR / 8 / Gammaproteobacteria
KC841291 / P-BC-1-a / peat / BC / 1 / Verrucomicrobia
KC841292 / P-BC-1-b / peat / BC / 1 / Cyanobacteria
KC841293 / P-BC-1-c / peat / BC / 1 / Cyanobacteria
KC841294 / F-FR-8-a / fill / FR / 8 / Gammaproteobacteria
KC841295 / F-FR-8-b / fill / FR / 8 / Gammaproteobacteria
KC841296 / P-BC-4-a / peat / BC / 4 / Verrucomicrobia
KC841297 / P-BC-4-b / peat / BC / 4 / Gammaproteobacteria
KC841298 / P-BC-4-c / peat / BC / 4 / Cyanobacteria
KC841299 / P-MFR-1-a / peat / MFR / 1 / Gammaproteobacteria
KC841300 / P-MFR-1-b / peat / MFR / 1 / Gammaproteobacteria
KC841301 / P-MFR-4-a / peat / MFR / 4 / Gammaproteobacteria
KC841302 / P-FR-0-a / peat / FR / 0 / Cyanobacteria
KC841303 / P-FR-4-a / peat / FR / 4 / Gammaproteobacteria
KC841304 / P-FR-4-b / peat / FR / 4 / Gammaproteobacteria
KC841305 / P-FR-4-c / peat / FR / 4 / Gammaproteobacteria
KC841306 / P-FR-4-d / peat / FR / 4 / Gammaproteobacteria
KC841307 / P-PM-2-a / peat / PM / 2 / Actinobacteria
KC841308 / P-PM-2-b / peat / PM / 2 / Bacteriodetes
KC841309 / P-PM-2-c / peat / PM / 2 / Actinobacteria
KC841310 / P-PM-2-d / peat / PM / 2 / Betaproteobacteria

Figure S1. GC-chromatograms of total TPH in peat field sample (A, black), bioavailable TPH in peat field sample (B, black), after Fenton’s reagent oxidation (A, pink), after modified Fenton’s reagent (A, blue). The similar patterns observed indicate that the increase in measured TPH concentrations following oxidation or tenax extraction (bioavailable TPH) is related to heightened extraction efficiency due to soil organic matter degradation or the use of a hydrophobic solid phase extractant. Dissimilar patterns would have indicated that increased TPH measurements were due to the inclusion of soil-derived organic compounds following oxidation or tenax extraction.

Figure S2. Cumulative O2 consumption (solid line, decreasing) and cumulative CO2 production (dotted line, increasing) for peat (A) and fill (B) for the biotic control (blue) or following treatment with either Fenton’s reagent (red) or modified Fenton’s reagent (green).

Figure S3. Summary of overall change in TPH concentration for the combined treatment for peat (A) and fill (B). Patterned bars indicate chemical oxidation causing either TPH removal (negative bars) or mobilizing TPH (positive bars). Solid bars show changes in TPH concentration during the bioremediation phase. Stacked bars indicate that each treatment had a similar effect. Overlaid bars are given when the bioremediation phase reverses the impact of chemical oxidation, for example when mobilized TPH is subsequently biodegraded, as is the case for peat treated with Fenton’s reagent and modified Fenton’s reagents. Values are given for the total quantity of TPH biodegraded (where negative values indicate that TPH was mobilized rather than biodegraded during incubation) and overall remediation efficiency. Treatments are as in Tables 2 and 3.