252y0541s 5/7/05
ECO252 QBA2, Final EXAM, May 4, 2005
Preparatory Computations
Part I Regression problem.
————— 4/28/2005 6:18:32 PM ————————————————————
Welcome to Minitab, press F1 for help.
Results for: 252x0504-4.MTW
MTB > Stepwise 'MPG' 'Horsepower' 'Length' 'Width' 'Weight' 'Cargo Volume' &
CONT> 'Turning Circle' 'SUV_D' 'Fuel_D' 'SUVwt' 'HPsq' 'AWD_D' &
CONT> 'FWD_D' 'RWD_D' 'SUV_L';
SUBC> AEnter 0.15;
SUBC> ARemove 0.15;
SUBC> Best 0;
SUBC> Constant.
Stepwise Regression: MPG versus Horsepower, Length, ...
Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15
Response is MPG on 14 predictors, with N = 119
N(cases with missing observations) = 2 N(all cases) = 121
Step 1 2 3 4 5 6
Constant 38.31 36.75 41.59 50.06 50.15 59.00
Weight -0.00491 -0.00436 -0.00578 -0.00495 -0.00424 -0.00339
T-Value -15.34 -11.87 -12.82 -9.31 -6.74 -5.61
P-Value 0.000 0.000 0.000 0.000 0.000 0.000
SUV_D -1.72 -33.71 -35.29 -35.12 -18.68
T-Value -2.84 -4.99 -5.36 -5.40 -2.71
P-Value 0.005 0.000 0.000 0.000 0.008
SUV_L 0.180 0.185 0.182 0.088
T-Value 4.75 5.04 5.01 2.26
P-Value 0.000 0.000 0.000 0.026
Turning Circle -0.285 -0.292 -0.255
T-Value -2.79 -2.90 -2.75
P-Value 0.006 0.004 0.007
Horsepower -0.0124 -0.1619
T-Value -2.01 -5.04
P-Value 0.046 0.000
HPsq 0.00040
T-Value 4.73
P-Value 0.000
S 2.50 2.43 2.23 2.17 2.14 1.96
R-Sq 66.78 68.94 74.04 75.70 76.55 80.45
R-Sq(adj) 66.50 68.40 73.36 74.85 75.51 79.41
Mallows C-p 71.5 61.4 34.8 27.4 24.7 4.8
More? (Yes, No, Subcommand, or Help)
SUBC> y
Step 7
Constant 58.50
Weight -0.00342
T-Value -5.74
P-Value 0.000
SUV_D -19.0
T-Value -2.79
P-Value 0.006
SUV_L 0.090
T-Value 2.36
P-Value 0.020
Turning Circle -0.210
T-Value -2.24
P-Value 0.027
Horsepower -0.175
T-Value -5.43
P-Value 0.000
HPsq 0.00042
T-Value 5.03
P-Value 0.000
Fuel_D 0.92
T-Value 2.11
P-Value 0.037
S 1.93
R-Sq 81.21
R-Sq(adj) 80.02
Mallows C-p 2.5
More? (Yes, No, Subcommand, or Help)
SUBC> y
No variables entered or removed
More? (Yes, No, Subcommand, or Help)
SUBC> n
MTB > Correlation 'Horsepower' 'Length' 'Width' 'Weight' 'Cargo Volume' &
CONT> 'Turning Circle' 'SUV_D' 'Fuel_D' 'SUVwt' 'SUVtc' 'HPsq' 'AWD_D' &
CONT> 'FWD_D' 'RWD_D' 'SUV_L'.
Correlations: Horsepower, Length, Width, Weight, Cargo Volume, ...
Horsepower Length Width Weight
Length 0.648
0.000
Width 0.660 0.825
0.000 0.000
Weight 0.673 0.634 0.780
0.000 0.000 0.000
Cargo Volume 0.296 0.395 0.546 0.716
0.001 0.000 0.000 0.000
Turning Circ 0.497 0.750 0.658 0.650
0.000 0.000 0.000 0.000
SUV_D 0.160 -0.102 0.180 0.535
0.080 0.265 0.049 0.000
Fuel_D 0.321 -0.013 -0.042 0.057
0.000 0.886 0.645 0.540
SUVwt 0.182 -0.077 0.206 0.562
0.045 0.403 0.023 0.000
SUVtc 0.185 -0.062 0.211 0.577
0.042 0.502 0.020 0.000
HPsq 0.989 0.632 0.645 0.668
0.000 0.000 0.000 0.000
AWD_D 0.059 -0.118 -0.037 0.065
0.523 0.199 0.691 0.483
FWD_D -0.370 -0.001 -0.163 -0.453
0.000 0.994 0.076 0.000
RWD_D 0.334 0.070 0.151 0.351
0.000 0.445 0.101 0.000
SUV_L 0.197 -0.053 0.219 0.582
0.030 0.564 0.016 0.000
Cargo Volume Turning Circ SUV_D Fuel_D
Turning Circ 0.486
0.000
SUV_D 0.459 0.139
0.000 0.127
Fuel_D -0.245 -0.069 -0.147
0.007 0.456 0.110
SUVwt 0.473 0.161 0.999 -0.141
0.000 0.078 0.000 0.125
SUVtc 0.484 0.196 0.996 -0.142
0.000 0.031 0.000 0.121
HPsq 0.289 0.480 0.173 0.296
0.001 0.000 0.058 0.001
AWD_D 0.021 -0.068 0.185 0.218
0.823 0.461 0.043 0.017
FWD_D -0.165 -0.027 -0.517 -0.280
0.071 0.771 0.000 0.002
RWD_D 0.108 0.015 0.364 0.098
0.239 0.874 0.000 0.288
SUV_L 0.487 0.181 0.996 -0.145
0.000 0.047 0.000 0.114
SUVwt SUVtc HPsq AWD_D
SUVtc 0.998
0.000
HPsq 0.198 0.200
0.030 0.028
AWD_D 0.184 0.174 0.040
0.044 0.057 0.667
FWD_D -0.522 -0.526 -0.369 -0.366
0.000 0.000 0.000 0.000
RWD_D 0.367 0.374 0.347 -0.137
0.000 0.000 0.000 0.135
SUV_L 0.999 0.998 0.215 0.176
0.000 0.000 0.018 0.054
FWD_D RWD_D
RWD_D -0.810
0.000
SUV_L -0.529 0.381
0.000 0.000
Cell Contents: Pearson correlation
P-Value
PRESS
Assesses your model's predictive ability. In general, the smaller the prediction sum of squares (PRESS) value, the better the model's predictive ability. PRESS is used to calculate the predicted R2. PRESS, similar to the error sum of squares (SSE), is the sum of squares of the prediction error. PRESS differs from SSE in that each fitted value, i, for PRESS is obtained by deleting the ith observation from the data set, estimating the regression equation from the remaining n - 1 observations, then using the fitted regression function to obtain the predicted value for the ith observation.
Predicted R2
Similar to R2. Predicted R2 indicates how well the model predicts responses for new observations, whereas R2 indicates how well the model fits your data. Predicted R2 can prevent overfitting the model and is more useful than adjusted R2 for comparing models because it is calculated with observations not included in model calculation.
Predicted R2 is between 0 and 1 and is calculated from the PRESS statistic. Larger values of predicted R2 suggest models of greater predictive ability.
MTB > Regress 'MPG' 6 'Weight' 'SUV_D' 'SUV_L' 'Turning Circle' &
CONT> 'Horsepower' 'HPsq';
SUBC> Constant;
SUBC> Brief 2.
MTB > Regress 'MPG' 6 'Weight' 'SUV_D' 'SUV_L' 'Turning Circle' &
CONT> 'Horsepower' 'HPsq';
SUBC> GNormalplot;
SUBC> NoDGraphs;
SUBC> RType 1;
SUBC> Constant;
SUBC> VIF;
SUBC> Press;
SUBC> Brief 2.
Regression Analysis: MPG versus Weight, SUV_D, ...
The regression equation is
MPG = 63.1 - 0.00303 Weight - 14.8 SUV_D + 0.0653 SUV_L - 0.264 Turning Circle
- 0.213 Horsepower + 0.000522 HPsq
Predictor Coef SE Coef T P VIF
Constant 63.105 3.978 15.86 0.000
Weight -0.0030345 0.0006859 -4.42 0.000 5.6
SUV_D -14.812 7.957 -1.86 0.065 282.1
SUV_L 0.06527 0.04478 1.46 0.148 307.9
Turning Circle -0.2639 0.1050 -2.51 0.013 2.0
Horsepower -0.21251 0.03575 -5.94 0.000 63.5
HPsq 0.00052249 0.00009459 5.52 0.000 61.3
S = 2.27485 R-Sq = 77.5% R-Sq(adj) = 76.4%
PRESS = 752.906 R-Sq(pred) = 71.34%
Analysis of Variance
Source DF SS MS F P
Regression 6 2037.34 339.56 65.62 0.000
Residual Error 114 589.95 5.17
Total 120 2627.29
Source DF Seq SS
Weight 1 1605.19
SUV_D 1 47.29
SUV_L 1 132.83
Turning Circle 1 52.31
Horsepower 1 41.83
HPsq 1 157.89
Unusual Observations
Obs Weight MPG Fit SE Fit Residual St Resid
16 5590 13.000 15.361 1.137 -2.361 -1.20 X
34 7270 10.000 6.856 1.461 3.144 1.80 X
40 5590 13.000 15.361 1.137 -2.361 -1.20 X
62 4065 19.000 14.633 0.654 4.367 2.00R
108 2150 38.000 30.489 0.632 7.511 3.44R
111 2750 41.000 33.473 1.133 7.527 3.82RX
114 2935 41.000 29.806 0.777 11.194 5.24R
115 2940 24.000 29.791 0.778 -5.791 -2.71R
R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.
MTB > Regress 'MPG' 5 'Weight' 'SUV_D' 'Turning Circle' 'Horsepower' &
CONT> 'HPsq';
SUBC> GNormalplot;
SUBC> NoDGraphs;
SUBC> RType 1;
SUBC> Constant;
SUBC> VIF;
SUBC> Press;
SUBC> Brief 2.
Regression Analysis: MPG versus Weight, SUV_D, ...
The regression equation is
MPG = 63.1 - 0.00250 Weight - 3.25 SUV_D - 0.250 Turning Circle
- 0.239 Horsepower + 0.000593 HPsq
Predictor Coef SE Coef T P VIF
Constant 63.137 3.998 15.79 0.000
Weight -0.0025020 0.0005834 -4.29 0.000 4.0
SUV_D -3.2492 0.6272 -5.18 0.000 1.7
Turning Circle -0.2501 0.1051 -2.38 0.019 1.9
Horsepower -0.23928 0.03082 -7.76 0.000 46.7
HPsq 0.00059313 0.00008163 7.27 0.000 45.2
S = 2.28595 R-Sq = 77.1% R-Sq(adj) = 76.1%
PRESS = 744.047 R-Sq(pred) = 71.68%
Analysis of Variance
Source DF SS MS F P
Regression 5 2026.35 405.27 77.56 0.000
Residual Error 115 600.94 5.23
Total 120 2627.29
Source DF Seq SS
Weight 1 1605.19
SUV_D 1 47.29
Turning Circle 1 46.32
Horsepower 1 51.65
HPsq 1 275.90
Unusual Observations
Obs Weight MPG Fit SE Fit Residual St Resid
16 5590 13.000 14.381 0.921 -1.381 -0.66 X
34 7270 10.000 5.945 1.328 4.055 2.18RX
40 5590 13.000 14.381 0.921 -1.381 -0.66 X
108 2150 38.000 30.081 0.570 7.919 3.58R
111 2750 41.000 33.910 1.098 7.090 3.54RX
114 2935 41.000 30.060 0.761 10.940 5.08R
115 2940 24.000 30.047 0.762 -6.047 -2.81R
R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.
MTB > Stepwise 'MPG' 'Horsepower' 'Length' 'Width' 'Weight' 'Cargo Volume' &
CONT> 'Turning Circle' 'SUV_D' 'Fuel_D' 'SUVwt' 'HPsq' 'AWD_D' &
CONT> 'FWD_D' 'RWD_D' 'SUV_L';
SUBC> AEnter 0.15;
SUBC> ARemove 0.15;
SUBC> Best 0;
SUBC> Constant.
Stepwise Regression: MPG versus Horsepower, Length, ...
Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15
Response is MPG on 14 predictors, with N = 119
N(cases with missing observations) = 2 N(all cases) = 121
Step 1 2 3 4 5 6
Constant 38.31 36.75 41.59 50.06 50.15 59.00
Weight -0.00491 -0.00436 -0.00578 -0.00495 -0.00424 -0.00339
T-Value -15.34 -11.87 -12.82 -9.31 -6.74 -5.61
P-Value 0.000 0.000 0.000 0.000 0.000 0.000
SUV_D -1.72 -33.71 -35.29 -35.12 -18.68
T-Value -2.84 -4.99 -5.36 -5.40 -2.71
P-Value 0.005 0.000 0.000 0.000 0.008
SUV_L 0.180 0.185 0.182 0.088
T-Value 4.75 5.04 5.01 2.26
P-Value 0.000 0.000 0.000 0.026
Turning Circle -0.285 -0.292 -0.255
T-Value -2.79 -2.90 -2.75
P-Value 0.006 0.004 0.007
Horsepower -0.0124 -0.1619
T-Value -2.01 -5.04
P-Value 0.046 0.000
HPsq 0.00040
T-Value 4.73
P-Value 0.000
S 2.50 2.43 2.23 2.17 2.14 1.96
R-Sq 66.78 68.94 74.04 75.70 76.55 80.45
R-Sq(adj) 66.50 68.40 73.36 74.85 75.51 79.41
Mallows C-p 71.5 61.4 34.8 27.4 24.7 4.8
More? (Yes, No, Subcommand, or Help)
SUBC> remove c20.
Step 7 8 9
Constant 59.15 59.00 58.50
Weight -0.00267 -0.00339 -0.00342
T-Value -5.10 -5.61 -5.74
P-Value 0.000 0.000 0.000
SUV_D -3.13 -18.68 -18.95
T-Value -5.51 -2.71 -2.79
P-Value 0.000 0.008 0.006
SUV_L 0.088 0.090
T-Value 2.26 2.36
P-Value 0.026 0.020
Turning Circle -0.236 -0.255 -0.210
T-Value -2.51 -2.75 -2.24
P-Value 0.013 0.007 0.027
Horsepower -0.199 -0.162 -0.175
T-Value -7.09 -5.04 -5.43
P-Value 0.000 0.000 0.000
HPsq 0.00050 0.00040 0.00042
T-Value 6.75 4.73 5.03
P-Value 0.000 0.000 0.000
Fuel_D 0.92
T-Value 2.11
P-Value 0.037
S 2.00 1.96 1.93
R-Sq 79.56 80.45 81.21
R-Sq(adj) 78.66 79.41 80.02
Mallows C-p 7.8 4.8 2.5
More? (Yes, No, Subcommand, or Help)
SUBC> enter c17 c18 c19.
Step 10 11 12 13
Constant 60.14 59.11 58.50 58.50
Weight -0.00355 -0.00346 -0.00344 -0.00342
T-Value -5.75 -5.72 -5.72 -5.74
P-Value 0.000 0.000 0.000 0.000
SUV_D -19.5 -19.1 -18.8 -19.0
T-Value -2.82 -2.77 -2.74 -2.79
P-Value 0.006 0.007 0.007 0.006
SUV_L 0.092 0.090 0.089 0.090
T-Value 2.37 2.32 2.30 2.36
P-Value 0.020 0.022 0.023 0.020
Turning Circle -0.207 -0.205 -0.202 -0.210
T-Value -2.10 -2.09 -2.07 -2.24
P-Value 0.038 0.039 0.041 0.027
Horsepower -0.175 -0.177 -0.176 -0.175
T-Value -5.33 -5.42 -5.41 -5.43
P-Value 0.000 0.000 0.000 0.000
HPsq 0.00042 0.00043 0.00042 0.00042
T-Value 4.98 5.04 5.02 5.03
P-Value 0.000 0.000 0.000 0.000
Fuel_D 0.73 0.80 0.87 0.92
T-Value 1.49 1.66 1.92 2.11
P-Value 0.139 0.099 0.057 0.037
AWD_D -1.1
T-Value -0.76
P-Value 0.451
FWD_D -1.36 -0.51 -0.17
T-Value -0.98 -0.62 -0.32
P-Value 0.331 0.535 0.752
RWD_D -1.23 -0.42
T-Value -0.93 -0.55
P-Value 0.353 0.586
S 1.95 1.95 1.94 1.93
R-Sq 81.37 81.27 81.22 81.21
R-Sq(adj) 79.65 79.73 79.86 80.02
Mallows C-p 7.6 6.1 4.4 2.5
More? (Yes, No, Subcommand, or Help)
SUBC> no
Results for: 252x0504-41.MTW
MTB > WSave "C:\Documents and Settings\rbove\My Documents\Minitab\252x0504-41.MTW";
SUBC> Replace.
Saving file as: 'C:\Documents and Settings\rbove\My
Documents\Minitab\252x0504-41.MTW'
MTB > erase c21
MTB > Regress 'MPG' 6 'Weight' 'SUV_D' 'SUV_L' 'Turning Circle' &
CONT> 'Horsepower' 'HPsq' ;
SUBC> GNormalplot;
SUBC> NoDGraphs;
SUBC> RType 1;
SUBC> Constant;
SUBC> VIF;
SUBC> Press;
SUBC> Brief 2.
Regression Analysis: MPG versus Weight, SUV_D, ...
The regression equation is
MPG = 64.4 - 0.00284 Weight - 15.8 SUV_D + 0.0694 SUV_L - 0.305 Turning Circle
- 0.214 Horsepower + 0.000524 HPsq
Predictor Coef SE Coef T P VIF
Constant 64.364 3.973 16.20 0.000
Weight -0.0028431 0.0006832 -4.16 0.000 5.7
SUV_D -15.843 7.867 -2.01 0.046 276.4
SUV_L 0.06943 0.04423 1.57 0.119 301.7
Turning Circle -0.3045 0.1055 -2.89 0.005 2.0
Horsepower -0.21444 0.03528 -6.08 0.000 63.1
HPsq 0.00052386 0.00009332 5.61 0.000 61.0
S = 2.24427 R-Sq = 78.3% R-Sq(adj) = 77.2%
PRESS = 725.963 R-Sq(pred) = 72.34%
Analysis of Variance
Source DF SS MS F P
Regression 6 2055.21 342.54 68.01 0.000
Residual Error 113 569.15 5.04
Total 119 2624.37
Source DF Seq SS
Weight 1 1602.61
SUV_D 1 49.58
SUV_L 1 135.39
Turning Circle 1 61.04
Horsepower 1 47.88
HPsq 1 158.71
Unusual Observations
Obs Weight MPG Fit SE Fit Residual St Resid
16 5590 13.000 15.259 1.123 -2.259 -1.16 X
34 7270 10.000 6.907 1.442 3.093 1.80 X
36 2715 24.000 28.432 0.493 -4.432 -2.02R
40 5590 13.000 15.259 1.123 -2.259 -1.16 X
107 2150 38.000 30.543 0.624 7.457 3.46R
110 2750 41.000 33.747 1.126 7.253 3.74RX
113 2935 41.000 30.000 0.772 11.000 5.22R
114 2940 24.000 29.985 0.774 -5.985 -2.84R
R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.
MTB > Regress 'MPG' 5 'Weight' 'SUV_D' 'Turning Circle' 'Horsepower' &
CONT> 'HPsq' ;
SUBC> GNormalplot;
SUBC> NoDGraphs;
SUBC> RType 1;
SUBC> Constant;
SUBC> VIF;
SUBC> Press;
SUBC> Brief 2.
Regression Analysis: MPG versus Weight, SUV_D, ...
The regression equation is
MPG = 64.4 - 0.00228 Weight - 3.53 SUV_D - 0.288 Turning Circle
- 0.243 Horsepower + 0.000599 HPsq
Predictor Coef SE Coef T P VIF
Constant 64.352 3.999 16.09 0.000
Weight -0.0022848 0.0005871 -3.89 0.000 4.2
SUV_D -3.5330 0.6366 -5.55 0.000 1.8
Turning Circle -0.2884 0.1057 -2.73 0.007 2.0
Horsepower -0.24278 0.03051 -7.96 0.000 46.6
HPsq 0.00059879 0.00008071 7.42 0.000 45.0
S = 2.25865 R-Sq = 77.8% R-Sq(adj) = 76.9%
PRESS = 720.507 R-Sq(pred) = 72.55%
Analysis of Variance
Source DF SS MS F P
Regression 5 2042.80 408.56 80.09 0.000
Residual Error 114 581.57 5.10
Total 119 2624.37
Source DF Seq SS
Weight 1 1602.61
SUV_D 1 49.58
Turning Circle 1 52.45
Horsepower 1 57.33
HPsq 1 280.82
Unusual Observations
Obs Weight MPG Fit SE Fit Residual St Resid
16 5590 13.000 14.223 0.914 -1.223 -0.59 X
34 7270 10.000 5.938 1.312 4.062 2.21RX
40 5590 13.000 14.223 0.914 -1.223 -0.59 X
107 2150 38.000 30.108 0.563 7.892 3.61R
110 2750 41.000 34.201 1.095 6.799 3.44RX
113 2935 41.000 30.262 0.759 10.738 5.05R
114 2940 24.000 30.251 0.760 -6.251 -2.94R
R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.
MTB > Regress 'MPG' 8 'Weight' 'SUV_D' 'Turning Circle' 'Horsepower' &
CONT> 'HPsq' 'AWD_D' 'FWD_D' 'RWD_D';
SUBC> GNormalplot;
SUBC> NoDGraphs;
SUBC> RType 1;
SUBC> Constant;
SUBC> VIF;
SUBC> Press;
SUBC> Brief 2.
Regression Analysis: MPG versus Weight, SUV_D, ...
The regression equation is
MPG = 66.4 - 0.00248 Weight - 3.83 SUV_D - 0.254 Turning Circle
- 0.251 Horsepower + 0.000618 HPsq - 1.21 AWD_D - 2.10 FWD_D - 1.70 RWD_D
Predictor Coef SE Coef T P VIF
Constant 66.435 4.400 15.10 0.000
Weight -0.0024795 0.0006077 -4.08 0.000 4.4
SUV_D -3.8302 0.6814 -5.62 0.000 2.0
Turning Circle -0.2541 0.1116 -2.28 0.025 2.2
Horsepower -0.25082 0.03122 -8.03 0.000 48.6
HPsq 0.00061833 0.00008244 7.50 0.000 46.7
AWD_D -1.213 1.620 -0.75 0.455 3.4
FWD_D -2.103 1.490 -1.41 0.161 11.2
RWD_D -1.697 1.434 -1.18 0.239 8.6
S = 2.26416 R-Sq = 78.3% R-Sq(adj) = 76.8%
PRESS = 727.840 R-Sq(pred) = 72.27%
Analysis of Variance
Source DF SS MS F P
Regression 8 2055.33 256.92 50.12 0.000
Residual Error 111 569.03 5.13
Total 119 2624.37
Source DF Seq SS
Weight 1 1602.61
SUV_D 1 49.58
Turning Circle 1 52.45
Horsepower 1 57.33
HPsq 1 280.82
AWD_D 1 2.00
FWD_D 1 3.36
RWD_D 1 7.17
Unusual Observations
Obs Weight MPG Fit SE Fit Residual St Resid
34 7270 10.000 5.609 1.377 4.391 2.44RX
57 4735 14.000 13.622 1.447 0.378 0.22 X
72 4720 15.000 15.901 1.374 -0.901 -0.50 X
107 2150 38.000 30.231 0.574 7.769 3.55R
109 5435 14.000 13.477 1.338 0.523 0.29 X
110 2750 41.000 34.346 1.106 6.654 3.37RX
113 2935 41.000 30.341 0.765 10.659 5.00R
114 2940 24.000 30.329 0.766 -6.329 -2.97R
R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.
Part II
1. Time series problem.
————— 4/28/2005 6:18:32 PM ————————————————————
Welcome to Minitab, press F1 for help.
MTB > WOpen "C:\Documents and Settings\rbove\My Documents\Minitab\252x0504-5.MTW".
Retrieving worksheet from file: 'C:\Documents and Settings\rbove\My
Documents\Minitab\252x0504-5.MTW'
Worksheet was saved on Fri Apr 29 2005
Results for: 252x0504-5.MTW
MTB > let c3=c2*c2
MTB > Save "C:\Documents and Settings\rbove\My Documents\Minitab\252x0504-5.MTW";
SUBC> Replace.
Saving file as: 'C:\Documents and Settings\rbove\My
Documents\Minitab\252x0504-5.MTW'
Existing file replaced.
MTB > Execute "C:\Documents and Settings\rbove\My Documents\Minitab\252OLS2.mtb" 1.
Executing from file: C:\Documents and Settings\rbove\My Documents\Minitab\252OLS2.mtb
Regression Analysis: Y versus T
The regression equation is
Y = 56.7 + 1.54 T
Predictor Coef SE Coef T P
Constant 56.659 1.283 44.15 0.000
T 1.5377 0.1411 10.89 0.000
S = 2.36169 R-Sq = 90.1% R-Sq(adj) = 89.4%
Analysis of Variance
Source DF SS MS F P
Regression 1 662.05 662.05 118.70 0.000
Residual Error 13 72.51 5.58
Total 14 734.56
Unusual Observations
Obs T Y Fit SE Fit Residual St Resid
1 1.0 53.430 58.196 1.161 -4.766 -2.32R
R denotes an observation with a large standardized residual.
Regression Analysis: Y versus T, TSQ
The regression equation is
Y = 52.4 + 3.04 T - 0.0939 TSQ
Predictor Coef SE Coef T P
Constant 52.401 1.545 33.91 0.000
T 3.0405 0.4444 6.84 0.000
TSQ -0.09392 0.02701 -3.48 0.005
S = 1.73483 R-Sq = 95.1% R-Sq(adj) = 94.3%
Analysis of Variance
Source DF SS MS F P
Regression 2 698.44 349.22 116.03 0.000
Residual Error 12 36.12 3.01
Total 14 734.56
Source DF Seq SS
T 1 662.05
TSQ 1 36.39
Unusual Observations
Obs T Y Fit SE Fit Residual St Resid
5 5.0 68.650 65.255 0.605 3.395 2.09R
R denotes an observation with a large standardized residual.
Executing from file: 252OLS2namer.MTB
Executing from file: 252OLS2sumer.MTB
Data Display
Row Y T TSQ C4 x1sq
1 53.43 1 1 1
2 59.09 2 4 4
3 59.58 3 9 9
4 64.75 4 16 16
5 68.65 5 25 25
6 65.53 6 36 36
7 68.44 7 49 49
8 70.93 8 64 64
9 72.85 9 81 81
10 73.60 10 100 100
11 72.93 11 121 121
12 75.14 12 144 144
13 73.88 13 169 169
14 76.55 14 196 196
15 79.05 15 225 225
* NOTE * One or more variables are undefined.
Data Display
Row x2sq ysq x1y x2y x1x2
1 1 2854.76 53.43 53.4 1
2 16 3491.63 118.18 236.4 8
3 81 3549.78 178.74 536.2 27
4 256 4192.56 259.00 1036.0 64
5 625 4712.82 343.25 1716.3 125
6 1296 4294.18 393.18 2359.1 216
7 2401 4684.03 479.08 3353.6 343
8 4096 5031.06 567.44 4539.5 512
9 6561 5307.12 655.65 5900.9 729
10 10000 5416.96 736.00 7360.0 1000
11 14641 5318.78 802.23 8824.5 1331
12 20736 5646.02 901.68 10820.2 1728
13 28561 5458.25 960.44 12485.7 2197
14 38416 5859.90 1071.70 15003.8 2744
15 50625 6248.90 1185.75 17786.3 3375
Data Display
sumy 1034.40
sumx1 120.000
sumx2 1240.00
n 15.0000
smx1sq 1240.00
smx2sq 178312
smysq 72066.8
smx1y 8705.75
smx2y 92011.7
smx1x2 14400.0
Executing from file: 252OLS2mean.MTB
Data Display
ybar 68.9600
x1bar 8.00000
x2bar 82.6667
Executing from file: 252OLS2ss.MTB
Data Display
SSx1 280.000
SSx2 75805.3
SSy 734.556
Sx1y 430.550
Sx2y 6501.33
Sx1x2 4480.00
MTB > print c1-c3
Data Display
Row Y T TSQ
1 53.43 1 1
2 59.09 2 4
3 59.58 3 9
4 64.75 4 16
5 68.65 5 25
6 65.53 6 36
7 68.44 7 49
8 70.93 8 64
9 72.85 9 81
10 73.60 10 100
11 72.93 11 121
12 75.14 12 144
13 73.88 13 169
14 76.55 14 196
15 79.05 15 225
MTB >
Problem 4 - ANOVA etc
————— 4/28/2005 6:18:32 PM ————————————————————
Welcome to Minitab, press F1 for help.
MTB > Stack 'x1' 'x2' 'x3' 'x4' c10;
SUBC> Subscripts c11;
SUBC> UseNames.
MTB > Rank c10 c12.
MTB > Unstack (c12);
SUBC> Subscripts c11;
SUBC> After;
SUBC> VarNames.
MTB > print c1-c5
Data Display
Row Student x1 x2 x3 x4
1 Loopy 8.75 9.5 8.5 11.5
2 Percival 9.50 4.0 8.5 11.0
3 Poopsy 9.25 5.5 7.5 7.5
4 Dizzy 9.50 8.5 7.5 7.5
5 Booger 9.25 4.5 8.0 8.0
MTB > print c1 c2 c6 c3 c7 c4 c8 c5 c9
Data Display
Row Student x1 r1 x2 r2 x3 r3 x4 r4
1 Loopy 8.75 13.0 9.5 17 8.5 11.0 11.5 20.0
2 Percival 9.50 17.0 4.0 1 8.5 11.0 11.0 19.0
3 Poopsy 9.25 14.5 5.5 3 7.5 5.5 7.5 5.5
4 Dizzy 9.50 17.0 8.5 11 7.5 5.5 7.5 5.5
5 Booger 9.25 14.5 4.5 2 8.0 8.5 8.0 8.5
MTB > let c13 = c2+c3+c4+c5
MTB > let c14 = (c2*c2) + (c3*c3) + (c4*c4) + (c5*c5)
MTB > sum c2
Sum of x1
Sum of x1 = 46.25
MTB > ssq c2
Sum of Squares of x1
Sum of squares (uncorrected) of x1 = 428.188
MTB > sum c3
Sum of x2
Sum of x2 = 32
MTB > ssq c3
Sum of Squares of x2
Sum of squares (uncorrected) of x2 = 229
MTB > sum c4
Sum of x3
Sum of x3 = 40
MTB > ssq c4
Sum of Squares of x3
Sum of squares (uncorrected) of x3 = 321
MTB > sum c5
Sum of x4
Sum of x4 = 45.5
MTB > ssq c5
Sum of Squares of x4
Sum of squares (uncorrected) of x4 = 429.75
MTB > print c13 c14
Data Display
Row C13 C14
1 38.25 371.313
2 33.00 299.500
3 29.75 228.313
4 33.00 275.000
5 29.75 233.813
Results for: 252x0504-6.MTW
MTB > WSave "C:\Documents and Settings\rbove\My Documents\Minitab\252x0504-6.MTW";
SUBC> Replace.
Saving file as: 'C:\Documents and Settings\rbove\My
Documents\Minitab\252x0504-6.MTW'
MTB >
————— 5/5/2005 6:38:07 PM ————————————————————
Welcome to Minitab, press F1 for help.
MTB > WOpen "C:\Documents and Settings\rbove\My Documents\Minitab\252x0504-6a.MTW".
Retrieving worksheet from file: 'C:\Documents and Settings\rbove\My
Documents\Minitab\252x0504-6a.MTW'
Worksheet was saved on Thu May 05 2005
Results for: 252x0504-6a.MTW
MTB > print c1-c4
Data Display
Row C1 C2 C3 C4
1 8.75 9.5 8.5 11.5
2 9.50 4.0 8.5 11.0
3 9.25 5.5 7.5 7.5
4 9.50 8.5 7.5 7.5
5 9.25 4.5 8.0 8.0
MTB > exec '2522way4'
Executing from file: 2522way4.MTB
Executing from file: 2522onw4.MTB
One-way ANOVA: C1, C2, C3, C4
Source DF SS MS F P
Factor 3 25.96 8.65 3.35 0.045
Error 16 41.28 2.58
Total 19 67.23
S = 1.606 R-Sq = 38.61% R-Sq(adj) = 27.10%
Individual 95% CIs For Mean Based on
Pooled StDev
Level N Mean StDev ------+------+------+------+--
C1 5 9.250 0.306 (------*------)
C2 5 6.400 2.460 (------*------)
C3 5 8.000 0.500 (------*------)
C4 5 9.100 1.981 (------*------)
------+------+------+------+--
6.0 7.5 9.0 10.5
Pooled StDev = 1.606
Executing from file: 2522onme4.MTB
Executing from file: 2522osme4.MTB
Data Display
Row C1 C2 C3 C4
1 8.75 9.5 8.5 11.5
2 9.50 4.0 8.5 11.0
3 9.25 5.5 7.5 7.5
4 9.50 8.5 7.5 7.5
5 9.25 4.5 8.0 8.0
Data Display
Row x1sq x2sq x3sq x4sq
1 76.5625 90.25 72.25 132.25
2 90.2500 16.00 72.25 121.00
3 85.5625 30.25 56.25 56.25
4 90.2500 72.25 56.25 56.25
5 85.5625 20.25 64.00 64.00
Data Display
sumx1 46.2500
sumx2 32.0000
sumx3 40.0000
sumx4 45.5000
n1 5.00000
n2 5.00000
n3 5.00000
n4 5.00000
smx1sq 428.188
smx2sq 229.000
smx3sq 321.000
smx4sq 429.750
Executing from file: 2522omea4.MTB
Data Display
x1bar 9.25000
x2bar 6.40000
x3bar 8.00000
x4bar 9.10000
Data Display
smxsq 1407.94
n 20.0000
sumx 163.750
srss 1407.94
gdmn 8.18750
srmsq 338.199
x1bsq 85.5625
x2bsq 40.9600
x3bsq 64.0000
x4bsq 82.8100
sxbsq 273.333
K26 1340.70
SSR 12.0938
SSC 25.9594
SST 67.2344
Data Display
Row C1 C2 C3 C4 rsum rmn rss rmnsq
1 8.75 9.5 8.5 11.5 38.25 9.5625 371.313 91.4414
2 9.50 4.0 8.5 11.0 33.00 8.2500 299.500 68.0625
3 9.25 5.5 7.5 7.5 29.75 7.4375 228.313 55.3164
4 9.50 8.5 7.5 7.5 33.00 8.2500 275.000 68.0625
5 9.25 4.5 8.0 8.0 29.75 7.4375 233.813 55.3164
Executing from file: 2522wr1.MTB
Executing from file: 2522wr1.MTB
Executing from file: 2522wr1.MTB
Executing from file: 2522wr1.MTB
Executing from file: 252-2W1O.MTB
Tabulated statistics: C41, C42
Rows: C41 Columns: C42
1 2 3 4 All
1 1 1 1 1 4
2 1 1 1 1 4
3 1 1 1 1 4
4 1 1 1 1 4
5 1 1 1 1 4
All 5 5 5 5 20
Cell Contents: Count
Tabulated statistics: C41, C42
Rows: C41 Columns: C42
1 2 3 4
1 8.75 9.50 8.50 11.50
2 9.50 4.00 8.50 11.00
3 9.25 5.50 7.50 7.50
4 9.50 8.50 7.50 7.50
5 9.25 4.50 8.00 8.00
Cell Contents: C40 : DATA
Tabulated statistics: C41, C42
Rows: C41 Columns: C42
1 2 3 4 All
1 8.750 9.500 8.500 11.500 9.563
2 9.500 4.000 8.500 11.000 8.250
3 9.250 5.500 7.500 7.500 7.438
4 9.500 8.500 7.500 7.500 8.250
5 9.250 4.500 8.000 8.000 7.438
All 9.250 6.400 8.000 9.100 8.188
Cell Contents: C40 : Mean
Two-way ANOVA: C40 versus C41, C42
Source DF SS MS F P
C41 4 12.0938 3.02344 1.24 0.344
C42 3 25.9594 8.65312 3.56 0.048
Error 12 29.1813 2.43177
Total 19 67.2344
S = 1.559 R-Sq = 56.60% R-Sq(adj) = 31.28%
Executing from file: 2522wfo4.MTB
Data Display
Row C31 C32 C33 C38 C34 C35 C36 C37
1 8.750 9.50 8.5 11.50 38.25 9.5625 371.31 91.441
2 9.500 4.00 8.5 11.00 33.00 8.2500 299.50 68.063
3 9.250 5.50 7.5 7.50 29.75 7.4375 228.31 55.316
4 9.500 8.50 7.5 7.50 33.00 8.2500 275.00 68.063
5 9.250 4.50 8.0 8.00 29.75 7.4375 233.81 55.316
6 46.250 32.00 40.0 45.50 163.75 8.1875 1407.94 338.199
7 5.000 5.00 5.0 5.00 20.00
8 9.250 6.40 8.0 9.10 8.19
9 428.188 229.00 321.0 429.75 1407.94
10 85.563 40.96 64.0 82.81 273.33
Data Display
Row SS. DF. MS. F.
1 12.0938 4 3.02344 1.24331
2 25.9594 3 8.65312 3.55836
3 29.1813 12 2.43177 1.00000
4 67.2344 19 3.53865 1.45517
MTB >
Problem 5 - Chisquared
Effectiveness / D u r a / t i o n< 1 mo. / 1-2 mo. / 2-4 mo. / >4 mo. / Total
Very Effective / 15 / 28 / 24 / 6 / 73
Effective / 9 / 26 / 33 / 19 / 87
Ineffective / 5 / 2 / 3 / 5 / 15
Total / 29 / 56 / 60 / 30 / 175
————— 5/5/2005 10:42:53 PM ————————————————————
Welcome to Minitab, press F1 for help.
MTB > WOpen "C:\Documents and Settings\rbove\My Documents\Minitab\252x0504-7.MTW".
Retrieving worksheet from file: 'C:\Documents and Settings\rbove\My
Documents\Minitab\252x0504-7.MTW'
Worksheet was saved on Fri Apr 29 2005
Results for: 252x0504-8.MTW
MTB > WSave "C:\Documents and Settings\rbove\My Documents\Minitab\252x0504-8.MTW";
SUBC> Replace.
Saving file as: 'C:\Documents and Settings\rbove\My
Documents\Minitab\252x0504-8.MTW'
MTB > let c14 = c10 + c11 + c12 +c13
MTB > sum c14
Sum of totO
Sum of totO = 175
MTB > let c15=c14/175
MTB > let k10= sum (c10)
MTB > let c20 = c15* k10
MTB > let k11 = sum (c11)
MTB > let c21 = c15* k11
MTB > let k12 = sum (c12)
MTB > let c22 = k12 * c15
MTB > let k13 = sum (c13)
MTB > let c23 = k13 * c15
MTB > let c24 = c20 + c21 + c22 + c23
MTB > let k20 = sum c20
MTB > let k20 = sum(c20)
MTB > let k21 = sum(c21)
MTB > let k22 = sum (c22)
MTB > let k23 = sum (c23)
MTB > print k10 k21 k11 k21 k12 k22 k13 k23
Data Display
K10 29.0000
K20 29.0000
K11 56.0000
K21 56.0000
K12 60.0000
K22 60.0000
K13 30.0000
K23 30.0000
MTB > let c30 = c20
MTB > let c31 = c21
MTB > let c30 = 100 * c20
MTB > let c31 = 100 * c21
MTB > let c32 = 100 * c22
MTB > let c33 = 100 * c23
MTB > round c30 c30
MTB > round c31 c31
MTB > round c32 c32
MTB > round c33 c33
MTB > let c30 = c30/100
MTB > let c31 = c31/100
MTB > let c32 = c32/100
MTB > let c33 = c33/100
MTB > let c34 = c30 + c31+ c32 + c33
MTB > sum c30
Sum of 1moE1
Sum of 1moE1 = 29.01
MTB > sum c31
Sum of 2moE1
Sum of 2moE1 = 56
MTB > sum c32
Sum of 4moE1
Sum of 4moE1 = 60
MTB > sum c33
Sum of momoE1
Sum of momoE1 = 29.99
MTB > print c10 - c14
Data Display
Row 1mo 2mo 4mo momo totO
1 15 28 24 6 73
2 9 26 33 19 87
3 5 2 3 5 15
MTB > print c10 - c15
Data Display
Row 1mo 2mo 4mo momo totO pr
1 15 28 24 6 73 0.417143
2 9 26 33 19 87 0.497143
3 5 2 3 5 15 0.085714
MTB > print c20 - c24
Data Display
Row 1moE 2moE 4moE momoE totE
1 12.0971 23.36 25.0286 12.5143 73
2 14.4171 27.84 29.8286 14.9143 87
3 2.4857 4.80 5.1429 2.5714 15
MTB > print c30 - c34
Data Display
Row 1moE1 2moE1 4moE1 momoE1 C34
1 12.10 23.36 25.03 12.51 73
2 14.42 27.84 29.83 14.91 87
3 2.49 4.80 5.14 2.57 15
MTB > Stack c10 c11 c12 c13 c1.
MTB > stack c30 c31 c32 c33 c2.
MTB > sum c1
Sum of C1
Sum of C1 = 175
MTB > sum c2
Sum of C2
Sum of C2 = 175
MTB > exec '252chisq'
Executing from file: 252chisq.MTB
Data Display
Row O E C3 C4 C5 C6
1 15 12.10 -2.90 8.4100 0.69504 18.5950
2 9 14.42 5.42 29.3764 2.03720 5.6172
3 5 2.49 -2.51 6.3001 2.53016 10.0402
4 28 23.36 -4.64 21.5296 0.92164 33.5616
5 26 27.84 1.84 3.3856 0.12161 24.2816
6 2 4.80 2.80 7.8400 1.63333 0.8333
7 24 25.03 1.03 1.0609 0.04239 23.0124
8 33 29.83 -3.17 10.0489 0.33687 36.5069
9 3 5.14 2.14 4.5796 0.89097 1.7510
10 6 12.51 6.51 42.3801 3.38770 2.8777
11 19 14.91 -4.09 16.7281 1.12194 24.2119
12 5 2.57 -2.43 5.9049 2.29763 9.7276
Data Display
n 175.000
K2 175.000
K3 -0.000000000
chisq1 16.0165
chisq 16.0165
K6 191.016
MTB > print c1-c6
Data Display
Row O E O-E O-Esq O-esq/E Osq/E
1 15 12.10 -2.90 8.4100 0.69504 18.5950
2 9 14.42 5.42 29.3764 2.03720 5.6172
3 5 2.49 -2.51 6.3001 2.53016 10.0402
4 28 23.36 -4.64 21.5296 0.92164 33.5616
5 26 27.84 1.84 3.3856 0.12161 24.2816
6 2 4.80 2.80 7.8400 1.63333 0.8333
7 24 25.03 1.03 1.0609 0.04239 23.0124
8 33 29.83 -3.17 10.0489 0.33687 36.5069
9 3 5.14 2.14 4.5796 0.89097 1.7510
10 6 12.51 6.51 42.3801 3.38770 2.8777
11 19 14.91 -4.09 16.7281 1.12194 24.2119
12 5 2.57 -2.43 5.9049 2.29763 9.7276
MTB > Save "C:\Documents and Settings\rbove\My Documents\Minitab\252x0504-8.MTW";
SUBC> Replace.
Saving file as: 'C:\Documents and Settings\rbove\My
Documents\Minitab\252x0504-8.MTW'
Existing file replaced.
Problem 5 - 2 proportions.
————— 5/6/2005 1:14:09 AM ————————————————————
Welcome to Minitab, press F1 for help.
Results for: 252x0504-8a.MTW
MTB > erase k1 -k200
MTB > erase c1-c100
MTB > exec '252-2p1'
Executing from file: 252-2p1.MTB
Executing from file: 252-2prp.MTB
Data Display
x1 7.00000
n1 65.0000
p1 0.107692
x2 8.00000
n2 90.0000
p2 0.0888889
Data Display
p0 0.0967742
n 155.000
sdp2 0.0487672
q0 0.903226
q1 0.892308
q2 0.911111
K213 0.00147838
K214 0.000899863
K215 0.00231596
sdp1 0.0481245
K217 0.0188034
K218 0.00237824
Data Display
1 poold 0
delp 0.0188034
MTB > Save "C:\Documents and Settings\rbove\My Documents\Minitab\252x0504-8a.MTW";
SUBC> Replace.
Saving file as: 'C:\Documents and Settings\rbove\My
Documents\Minitab\252x0504-8a.MTW'
Existing file replaced.
MTB >
Problem 5 - Poisson problem
e) (Anderson et. al.) The number of emergency calls our Fire department receives is believed to have a Poisson distribution with a parameter of 3. Test this against data for a period of 120 days: 0 calls on 9 days, 1 call on 12 days, 2 calls on 30 days, 3 calls on 27 days, 4 calls on 22 days. 5 calls on 13 days and 7 calls on 6 days. (5)
This is the Poisson 3 table.
1
252y0541s 5/7/05
k P(x=k) P(xk)
0 0.049787 0.04979
1 0.149361 0.19915
2 0.224042 0.42319
3 0.224042 0.64723
4 0.168031 0.81526
5 0.100819 0.91608
6 0.050409 0.96649
7 0.021604 0.98810
8 0.008102 0.99620
9 0.002701 0.99890
10 0.000810 0.99971
11 0.000221 0.99993
12 0.000055 0.99998
13 0.000013 1.00000
14 0.000003 1.00000
15 0.000001 1.00000
16 0.000000 1.00000
17 0.000000 1.00000
P(x=k)
0.049787
0.149361
0.224042
0.224042
0.168031
0.100819
0.050409
0.021604
0.008102
0.002701
0.000810
0.000221
0.000055
0.000013
0.000003
0.000001
0.000000
0.000000
P(xk)
0.04979
0.19915
0.42319
0.64723
0.81526
0.91608
0.96649
0.98810
0.99620
0.99890
0.99971
0.99993
0.99998
1.00000
1.00000
1.00000
1.00000
1.00000
1
252y0541s 5/7/05
————— 5/6/2005 1:14:09 AM ————————————————————
Welcome to Minitab, press F1 for help.
MTB > WOpen "C:\Documents and Settings\rbove\My Documents\Minitab\252x0504-8b.MTW".
Retrieving worksheet from file: 'C:\Documents and Settings\rbove\My
Documents\Minitab\252x0504-8b.MTW'
Worksheet was saved on Fri May 06 2005
Results for: 252x0504-8b1.MTW
MTB > WSave "C:\Documents and Settings\rbove\My Documents\Minitab\252x0504-8b1.MTW";
SUBC> Replace.
Saving file as: 'C:\Documents and Settings\rbove\My
Documents\Minitab\252x0504-8b1.MTW'
MTB > let c1 = c10
MTB > let c2 = c11
MTB > exec '252chisq'
Executing from file: 252chisq.MTB
Data Display
Row O E C3 C4 C5 C6
1 9 5.9744 -3.02556 9.1540 1.53220 13.5578
2 12 17.9233 5.92332 35.0857 1.95755 8.0342
3 30 26.8850 -3.11496 9.7030 0.36091 33.4759
4 27 26.8850 -0.11496 0.0132 0.00049 27.1155
5 22 20.1637 -1.83628 3.3719 0.16723 24.0035
6 13 12.0983 -0.90172 0.8131 0.06721 13.9689
7 7 10.0704 3.07040 9.4274 0.93615 4.8657
Data Display
n 120.000
K2 120.000
K3 0.000240000
chisq1 5.02148
chisq 5.02172
K6 125.021
MTB > print c10-c14
Data Display
Row O1 E2 f E1 Fcum
1 9 5.9744 0.049787 5.9744 0.04979
2 12 17.9233 0.149361 17.9233 0.19915
3 30 26.8850 0.224042 26.8850 0.42319
4 27 26.8850 0.224042 26.8850 0.64723
5 22 20.1637 0.168031 20.1637 0.81526
6 13 12.0983 0.100819 12.0983 0.91608
7 7 10.0704 0.050409 6.0491 0.96649
8 0.021604 2.5925 0.98810
9 0.008102 0.9722 0.99620
10 0.002701 0.3241 0.99890
11 0.000810 0.0972 0.99971
12 0.000221 0.0265 0.99993
13 0.000055 0.0066 0.99998
14 0.000013 0.0016 1.00000
15 0.000003 0.0004 1.00000
16 0.000001 0.0001 1.00000
17 0.000000 0.0000 1.00000
18 0.000000 0.0000 1.00000
————— 5/6/2005 1:14:07 AM ————————————————————
Welcome to Minitab, press F1 for help.
MTB > WOpen "C:\Documents and Settings\rbove\My Documents\Minitab\252x0504-8b2.MTW".
Retrieving worksheet from file: 'C:\Documents and Settings\rbove\My
Documents\Minitab\252x0504-8b2.MTW'
Worksheet was saved on Fri May 06 2005
Results for: 252x0504-8b2.MTW
MTB > exec '252KSO'
Executing from file: 252KSO.MTB
Executing from file: 252ksc.MTB
Data Display
Row O O/n FO
1 9 0.075000 0.07500
2 12 0.100000 0.17500
3 30 0.250000 0.42500
4 27 0.225000 0.65000
5 22 0.183333 0.83333
6 13 0.108333 0.94167
7 7 0.058333 1.00000
Data Display
n 120.000
MTB > exec '252ks'
Executing from file: 252ks.MTB
Data Display
Row FE D
1 0.04979 0.0252100
2 0.19915 0.0241500
3 0.42319 0.0018100
4 0.64723 0.0027700
5 0.81526 0.0180733
6 0.91608 0.0255867
7 0.96649 0.0335100
8 0.98810 0.0119000
9 0.99620 0.0038000
10 0.99890 0.0011000
11 0.99971 0.0002900
12 0.99993 0.0000700
13 0.99998 0.0000200
14 1.00000 0.0000000
15 1.00000 0.0000000
16 1.00000 0.0000000
17 1.00000 0.0000000
18 1.00000 0.0000000
Data Display
max D 0.0335100
MTB > print c1 c6 c3 c4 c5
Data Display
Row O O/n FO FE D
1 9 0.075000 0.07500 0.04979 0.0252100
2 12 0.100000 0.17500 0.19915 0.0241500
3 30 0.250000 0.42500 0.42319 0.0018100
4 27 0.225000 0.65000 0.64723 0.0027700
5 22 0.183333 0.83333 0.81526 0.0180733
6 13 0.108333 0.94167 0.91608 0.0255867
7 7 0.058333 1.00000 0.96649 0.0335100
8 1.00000 0.98810 0.0119000
9 1.00000 0.99620 0.0038000
10 1.00000 0.99890 0.0011000
11 1.00000 0.99971 0.0002900
12 1.00000 0.99993 0.0000700
13 1.00000 0.99998 0.0000200
14 1.00000 1.00000 0.0000000
15 1.00000 1.00000 0.0000000
16 1.00000 1.00000 0.0000000
17 1.00000 1.00000 0.0000000
18 1.00000 1.00000 0.0000000
MTB >
Problem 6
————— 4/29/2005 4:38:10 AM ————————————————————
Welcome to Minitab, press F1 for help.
Results for: 252x0504-7.MTW
MTB > WSave "C:\Documents and Settings\rbove\My Documents\Minitab\252x0504-7.MTW";
SUBC> Replace.
Saving file as: 'C:\Documents and Settings\rbove\My
Documents\Minitab\252x0504-7.MTW'
MTB > let d = c2-c3
MTB > sum c2
Sum of 2001
Sum of 2001 = 2860.46
MTB > ssq c2
Sum of Squares of 2001
Sum of squares (uncorrected) of 2001 = 953941
MTB > sum c3
Sum of 2002
Sum of 2002 = 2954.56
MTB > ssq c3
Sum of Squares of 2002
Sum of squares (uncorrected) of 2002 = 999629
MTB > sum c4
Sum of d
Sum of d = -94.104
MTB > ssq c4
Sum of Squares of d
Sum of squares (uncorrected) of d = 3724.97
MTB > print c1-c4
Data Display
Row Location 2001 2002 d
1 Alexandria 245.795 293.266 -47.471
2 Boston 391.750 408.803 -17.053
3 Decatur 205.270 227.561 -22.291
4 Kirkland 326.524 333.569 -7.045
5 New York 545.363 531.098 14.265
6 Philadephia 185.736 197.874 -12.138
7 Phoenix 170.413 175.030 -4.617
8 Raleigh 210.015 196.094 13.921
9 San Bruno 385.387 391.409 -6.022
10 Tampa 194.205 199.858 -5.653
MTB > Save "C:\Documents and Settings\rbove\My Documents\Minitab\252x0504-7.MTW";
SUBC> Replace.
Saving file as: 'C:\Documents and Settings\rbove\My
Documents\Minitab\252x0504-7.MTW'
Existing file replaced.
MTB >
————— 5/6/2005 6:05:38 AM ————————————————————
Welcome to Minitab, press F1 for help.
MTB > WOpen "C:\Documents and Settings\rbove\My Documents\Minitab\252x0504-7.MTW".
Retrieving worksheet from file: 'C:\Documents and Settings\rbove\My
Documents\Minitab\252x0504-7.MTW'
Worksheet was saved on Fri Apr 29 2005
Results for: 252x0504-7.MTW
MTB > Rank 'd' c5.
MTB > print c1-c5
Data Display
Row Location 2001 2002 d C5
1 Alexandria 245.795 293.266 -47.471 1
2 Boston 391.750 408.803 -17.053 3
3 Decatur 205.270 227.561 -22.291 2
4 Kirkland 326.524 333.569 -7.045 5
5 New York 545.363 531.098 14.265 10
6 Philadephia 185.736 197.874 -12.138 4
7 Phoenix 170.413 175.030 -4.617 8
8 Raleigh 210.015 196.094 13.921 9
9 San Bruno 385.387 391.409 -6.022 6
10 Tampa 194.205 199.858 -5.653 7
MTB > let c6 = c4
MTB > let c5 = absolute(c4)
MTB > rank c5 c6
MTB > print c1-c6
Data Display
Row Location 2001 2002 d C5 C6
1 Alexandria 245.795 293.266 -47.471 47.471 10
2 Boston 391.750 408.803 -17.053 17.053 8
3 Decatur 205.270 227.561 -22.291 22.291 9
4 Kirkland 326.524 333.569 -7.045 7.045 4
5 New York 545.363 531.098 14.265 14.265 7
6 Philadephia 185.736 197.874 -12.138 12.138 5
7 Phoenix 170.413 175.030 -4.617 4.617 1
8 Raleigh 210.015 196.094 13.921 13.921 6
9 San Bruno 385.387 391.409 -6.022 6.022 3
10 Tampa 194.205 199.858 -5.653 5.653 2
MTB > Stack c2 c3 c10;
SUBC> Subscripts c11;
SUBC> UseNames.
MTB > Rank c10 c12.
MTB > Unstack (c12);
SUBC> Subscripts c11;
SUBC> After;
SUBC> VarNames.
MTB > print c1 c2 c13 c3 c14
Data Display
Row Location 2001 C12_2001 2002 C12_2002
1 Alexandria 245.795 11 293.266 12
2 Boston 391.750 17 408.803 18
3 Decatur 205.270 8 227.561 10
4 Kirkland 326.524 13 333.569 14
5 New York 545.363 20 531.098 19
6 Philadephia 185.736 3 197.874 6
7 Phoenix 170.413 1 175.030 2
8 Raleigh 210.015 9 196.094 5
9 San Bruno 385.387 15 391.409 16
10 Tampa 194.205 4 199.858 7
MTB > Save "C:\Documents and Settings\rbove\My Documents\Minitab\252x0504-7.MTW";
SUBC> Replace.
Saving file as: 'C:\Documents and Settings\rbove\My
Documents\Minitab\252x0504-7.MTW'
Existing file replaced.
MTB >
Part III
252x0541 4/22/05 ECO252 QBA2
Final EXAM
May 2-6, 2004
TAKE HOME SECTION
Name: ______
Student Number: ______
Class days and time : ______
Please Note: computer problems 2,3 and 4 should be turned in with the exam (2). In problem 2, the 2 way ANOVA table should be checked. The three F tests should be done with a 5% significance level and you should note whether there was (i) a significant difference between drivers, (ii) a significant difference between cars and (iii) significant interaction. In problem 3, you should show on your third graph where the regression line is. Check what your text says about normal probability plots and analize the plot you did. Explain the results of the t and F tests using a 5% significance level. (2)