Areas of the FSE study program BMEI

Compulsory Courses of the Program

AE6M33SSL Statistics and reliability in medicine

  1. Principles of statistical data processing and hypothesis testing, the ROC curve.
  2. Correlation analysis, factor analysis, cluster analysis.
  3. Reliability of complex systems and its calculation
  4. Bathtub curve, systems with repair, backup of technical systems

AE6M31ANS Signal Analysis

  1. Correlation, spectral analysis and coherence analysis. Spectrogram, wavelet transform, resampling, filter banks.
  2. Description and properties of systems in time and frequency domains. Convolution, stability, causality. Design of digital filters, filter examples, cumulative totals, customized filtering.
  3. Discretization of continuous systems / signals, the choice of sampling period, quantization. Parametric methods, adaptive filtering.

AE6M33LI Medical Informatics

  1. Electronic Health Record. Standards and classification systems in medicine.
  2. Data, information and knowledge in medicine. Protection and data security and transmission.
  3. Information systems, decision support, intelligent monitoring systems. Mobile applications.

AE6M33MOS Modeling and simulation in biomedicine

  1. Modeling techniques used in biomedical engineering (Matlab - Simulink, Modelica) and modeling technology (types of models, models of continuous and discrete time, linear and nonlinear models with lumped parameters).
  2. Formalization and creation of a model, its identification, verification and interpretation of the biological system. Steady-state simulations and investigation. Uncoupled models and feedback systems. Problems of optimization and homeostasis.
  3. Models of cellular and physiological regulation, models of populations. Models of individual systems and entire networks defined in biomedical engineering. Application of models for the creation of artificial organs.

AE6M33ZMO Medical image processing

  1. The basic image processing algorithms - geometric and intensity transformations, filtration. Detection and classification.
  2. Image segmentation algorithms, their implementation and use.
  3. Image registration algorithms, their implementation and use.

Compulsory courses of

Biomedical Engineering study branch

AE6M31BSG Biological signals

  1. Biopotentials, evoked and native biological signals, types, genesis.
  2. The signals used in internal medicine, neurology, ophthalmology and sleep medicine. Parameters of signals, their capture and processing.
  3. The signals used in phoniatry and ENT. Characteristics of voice and speech patterns, processing.

AE6M31LET Medical Technology

  1. Sensing biological potentials, electrodes for sensing biopotentials, electrode properties, half-cell potential, equivalent electric circuit of the electrode, the input amplifiers for measuring biopotentials, amplifier requirements, suppression of common mode signals, instrument amplifier.
  2. Medical instrumentation, classification of medical devices, basic static and dynamic parameters, the general input impedance of the device, block diagram of the diagnostic and therapeutic devices.
  3. Apparatus for diagnosing the cardiovascular system (ECG, blood pressure, cardiac output measurement, pulse oximetry) - principle of operation, principles of design, basic requirements and characteristics.
  4. Further medical devices (electroencephalograph, electromyograph, measurement of body temperature, devices for intensive medicine, medical monitors) - principle of operation, principles of design, basic requirements and characteristics.

AE6M38KLS Construction of medical systems

  1. General principles and principles of design and construction of medical devices - technical standards and requirements for design, construction and operation of medical electrical equipment.
  2. Principles of design and construction of basic blocks of medical devices - reference sources - measuring amplifiers - measuring transducers.
  3. Electromagnetic compatibility of medical devices.

AE6M34BMS Biomedical sensors

  1. Electrical and physical properties of sensors and microactuators (static and dynamic). Basic physical principles of sensors (Piezo-resistive, piezoelectric, capacitance, inductance, pn transition, with Hall sensor magnetoresistive, ferromagnetic, etc.).
  2. Sensors and microsensors for the measurement of basic physical, chemical and biochemical variables. Basic principles, basic electronic structure (ISFET, MOS ...), electronic circuit.
  3. Microactuators (micromanipulators), nanotechnology, nanosensors and nanosystems in medicine.

AE6M33ZSL Medical Imaging Systems

  1. Ultrasonic imaging in medicine. Generation, detection, demodulation, creating an image, use in medicine.
  2. Magnetic resonance imaging in medicine. Principles, spatial encoding, fast scanning, use in medicine.
  3. Imaging methods utilizing ionizing radiation - X-ray, computed tomography, SPECT and PET. Principles and application in medicine.

AE6M02BFY Biophysics

  1. Electromagnetic spectrum – description, radiation sources. Black body radiation and radiometry, photometry. Detectors of ionizing radiation dosimetry.
  2. Haemodynamics - measurement of haemodynamic parameters of the bloodstream (blood pressure, pulse, blood flow, etc.), basic methods for measuring blood pressure, extracorporeal circulation, replacement blood vessels and heart, statics and dynamics of ideal fluid, flow of real fluids. Solutions and body fluids, properties and their measurement. Electrochemistry and principles of the electrodes.
  3. Acoustics - Basic definitions, sound propagation, sound pressure gauges, otoacoustic emissions, audiometry, tympanometry, hearing aids, bone vibrators, cochlear neuroprosthesis.

AE6M02FPT Physics for therapy

  1. Rehabilitation methods - electrotherapy, ultrasound therapy, magnetic therapy, phototherapy - Basic overview of the biological effects of EM fields and use of these effects in medicine. Principles, block diagrams, indication.
  2. Haemodialysis, peritoneal dialysis - Block diagram, principle of operation, description of each block, indications, capillary hemodialyzer.
  3. Prosthetics - block diagrams, requirements on prosthetic replacements, engines used in prosthetic replacements of the upper limbs, feedback.

AE6M33OZL Health Organization and legislation

  1. The health care system, hospitals, funding models, legal relations
  2. Legislative aspects of the development, production and distribution of medical devices
  3. Medical records, patient data protection, informed consent

Compulsory courses of the

Biomedical Informatics study branch

AE4M33PAL (Advanced Algorithms) - OI

  1. Lexical analyzer, the program implementation. Syntactic tree, top-down parser, LL (1) grammars and their properties.
  2. Search algorithms in text with linear and sublinear complexity (KMP, BM, Karp-Rabin), the use of finite automata to search in the text.

AE4M01TAL (Theory of Algorithms) - OI

  1. Basic graph algorithms: minimal skeleton, found a strong coherent component, matching in bipartite graphs, isomorphism of graphs.
  2. Algorithm, the correctness of the algorithm, algorithm complexity, problem complexity, P class P, NP class.
  3. NP-complete and NP-hard task, Cooke's Theorem, heuristics for solving NP-hard problems, probabilistic algorithms.

AE4M33SAD (Machine Learning and Data Analysis) - OI

  1. Cluster analysis, k-means and hierarchical clustering. Association rules and algorithms for their searches, frequent subgraphs. Principle and independent component analysis.
  2. Computational learning theory, concept space, PAC learning. Learning classification rules, grammars and learning from texts.
  3. Inductive Logic Programming, learning from logical interpretations, relational features and relational decision trees, statistical relational learning: probabilistic relational models, Markov logic.

AE6M33BIN (Bioinformatics)

  1. Modelling, comparison, alignment and folding of biological sequences
  2. Modeling functions, interactions and protein structure.
  3. Data analysis of broadband measurements, finding significant units (genes and their groups, polymorphisms, cellular processes)

AE6M33NIN (neuroinformatics)

  1. Recording of extracellular and intracellular neuronal activity, detection and classification of action potentials, statistical parameters of the firing neuron, generating an artificial action potential, visualization of neuron activity.
  2. Models of neurons: Integrate and Fire model, Poisson and point processes, information transfer in the brain, temporal and frequency coding
  3. Learning processes in neurons, short-and long-term learning, learning in stochastic models of neurons, learning based on the frequency and temporal characteristics

AE6M33AST (Assistive technology and surveillance systems)

  1. Man machine interface, alternative ways to control computers and the issue of text input. Barrier-free access to the web and software products - the rules of accessible software.
  2. Complex integrated systems to support users with different restrictions. Approach to ensure mobility and control of environment for users with limited mobility: benefits and risks. Technological support for cognitive disorders.
  3. Computer-controlled surveillance systems, their structure, control and safe operation.