Krywka1
Nash Krywka
Ms. Findley
Eng-1060
10/8/2014
Humans’ Role in Destroying Honey Bees
America’s honey bee population alone creates roughly $15 billion in crop value per year, and 30% of the food that is consumed has direct ties to pollination from honey bees (Voeller and Nieh para. 5). In the last 70 years, the number of honey bee colonies kept by humans has dropped from 5 million, down to 2.5 million (Grossman pg.1). Between the years 2006 and 2011 there was an annual loss of 33%, with at least one third of these due to Colony Collapse Disorder or CCD. Colony Collapse Disorder is the surging number of disappearances of worker bees in European honey bee colonies.The USDA states in Honey Bees and Colony Collapse Disorder that CCD leaves behind such evidence as the lone presence of the queen and the desertion of food and the capped brood which makes instances of CCD uniquely dismaying. If a hive dies without a queen, or by lack of food, other disorders can be blamed like the infestation of tracheal mites, Varroa mites, or starvation due to poor hive conditions. The vanishing act most often occurs in the early spring by the bees, which has given the collapse the nicknames May Disease and Spring Dwindling. Vast amounts of evidence points to humans being the leading cause of this disorder. The use of chemicals in bee colonies or in surrounding areas later found in wax of the bees, poor hive management and bee keeping practices, and the lack of genetic diversity caused by a small gene pool used to breed bees can prove that humans are pushing colonies to the edge, making them weaker and more susceptible to the unidentified virus leading to this collapse.
One common speculation about the cause of Colony Collapse Disorder is that there is an unknown virus circulating from hive to hive. This could be true, as a weakened hive would be more at risk for collapse. However, there are conspiracies that point towards the inability to identify a cause to colony collapse disorder. These are easily disregarded though, as everything has a reason, and science is capable of solving this problem through data analysis. The most common, and also highly preposterous statement made about CCD is that humans are not impacting the honey bee’s risk of CCD or creating the overall cause. This statement is put out by corporations such as Bayer, who lead the market in the production of pesticides. Bayer has gone as far to say that in studies testing the relation between pesticides made by Bayer being used on bee colonies that the levels of pesticides used on the hives were “extremely high.”Those similar to Bayer desire their corporation’s success more than the wellbeing of the honey bee population, which directly impacts human’s wellbeing as well. Evidence shows the reason to believe humans cause or impact CCD, and these statements made by pesticide producers should be thrown away, while the corporations should be reprimanded. Human’s impact on the bees can be proven via data showing the common human mistakes increasing the risk of CCD such as chemical use, poor hive management from handlers, and lack of genetic diversity caused by breeders.
Theuse of unnecessary pesticides on vegetation in our farmlands has major evidence pointing to the increased risk for an unhealthy colony. If not total CCD or death of the population due to other disorders, these impacted colonies often have less protein found in their food leading to an unhealthy hive. Pathogens such as Nosema Apis and pesticide levels from the commonly used miticides found in wax from CCD infected hives have skyrocketed, pointing to the introduction of these chemicals from an external source. The use of Neonicotinoids on plants and the use of miticides by keepers in their hive to disperse and kill unwanted mites have unhealthy correlations to a hive’s health, and point to these high pathogen levels determined by wax protein studies. (Colony Collapse Disorder: A Descriptive Study paragraph 10)
Neonicotinoids are a class of insecticides similar to nicotine. These insecticides were designed in the 1980s and 90s by companies like Bayer CropScience, Shell, and Syngenta. The EFSA states in paragraph 7 in their press release "EFSA Identifies Risks to Bees from Neonicotinoids" that Neonicotinoids show less toxicity levels in mammals and birds, eliminating the risk of thinned eggshells of birds and the sickening of mammals that ingest the insecticide. However, bird populations have later been compromised by the drop in insect population caused directly by neonicotinoids like imidacloprid, the leading neonicotinoid worldwide. Colony Collapse Disorder Progress Report states that while Neonicotinoids were intended to have lower toxicity levels for unintended insects, this has proven to be wrong as there is a heavily suggested toxicity level to honey bees and some other beneficial pollinators who come in contact with the chemical (22). It is well known now that the chemicals thiamethoxam and clothianidin induce tremors in bees, convulsions, and lack of coordination when moving. The two chemicals also show presence in dead bees during a 2012 study done by the European Food Safety Authority or EFSA. Since then, this chemical use has been banned on vegetation that bees collect from. This, however, does not prove to be affective because of situations like corn. While bees do not pollinate corn, they often inspect the corn for pollen, which contaminates the bee. As the EFSA stated in a Press release, “The only risk assessment that could be completed was for maize treated with thiamethoxam. In this case, field studies show an acute effect on honey bees exposed to the substance through guttation fluid”(EFSA paragraph 2). This impact on the honey bee itself is a major reason that neonicotinoids should be limited in usage, along with their effect on other insect populations, and birds. While these do not have a direct connection to CCD in honey bees, any factor impairing the bees causes stress and degradation of protein levels inthe food supplies of the bees. Paragraph 10 in Colony Collapse Disorder: A Descriptive Study that “… whole-bee protein levels can serve as an indirect measure of developmental stress.”When food supplies become scarce enough that the bees can no longer feed themselves, they could possibly leave. Any stressor to the honey bee should be stopped in hopes of creating healthier hives and lowering the risk of CCD.
Miticides which are a form of spray pesticide focused towards Varroa mites have been used by bee keepers since the 1980s and are intended to help with the removal of small mites known as Varroa mites. These mites infect the trachea of bees and weaken them, sometimes spreading viruses such as the Deformed Wing Virus which leads to the bees having crippled wings. Miticides such as Acaricide are often reported to have been used by keepers in a colony when CCD has been reported, but not always. This means no single miticide can be blamed for the rise of CCD, but can potentially weaken a bee’s system and entire hives increasing their risk for CCD. Hives that have Varroa mites, which is common in the 21st century, can be treated in a number of ways. A simple solution having little to no negative side effects on the bees is coating the hive in powdered sugar, and the installation of a mite screen. When the bees in a hive are coated lightly in powdered sugar, the mites lose the ability to cling to the bees, and fall to the bottom of the hive. If a mite screen is installed, the mites cannot enter back into the hive and die, leaving the bees to clean the powdered sugar off, which is no problem for a creature that solely consumes sugar. Another treatment being worked on for the removal of Varroa mites is the use of food additives to fight off mites. It is said in Honey Bees and Colony Collapse Disorderthat “ARS determined that the food additive 2-heptanone and beta plant acids can be highly effective in controlling Varroa mite populations inbee colonies.” The completion of this technique could bring another effective and quick treatment for the removal of Varroa mites.Both the infestation of mites and improper treatment can be tied to CCD, like stated in ‘Colony Collapse Disorder: a descriptive study’: “Since the late 1980s, U.S. beekeepers have been using miticides within their beehives to control parasitic mites (primarily Varroa mites). A diverse range of pesticides, both grower- and beekeeper-applied, have been detected in hive matrices, and these products are known to adversely affect colony health” (Mullin paragraph 12). This evidence helps show that the introduction of outside contaminants can be harmful enough to the bees to push them into CCD. While it is not a direct correlation, any destructor of bee health can be a factor in the cause of CCD.
Both neonicotinoids and miticides, as shown above, unintentionally weaken hives, leading to lowered food production and health of bees. Any small changes like this in the hive can be a factor that increases the risk of CCD as shown by the abundance of external chemicals found in hives that have fallen due to CCD. Humans are the only contributor to the amount of these chemicals found in hives, and have the ability to use different methods of pest control.
Poor hive management possibly weakening the bee’s immune systems is another factor to blame in the overwhelming uprising of CCD. The management of a hive can push bees to produce, or hinder their production of brood and food supplies. One of the examples of poor hive management often seen in today’s commercial bee hives is the unnecessary movement and disturbance of beehives. The other is the malnutrition of hives caused by keepers.
The poor bee keeping practice becoming popular in the far eastern and western United States is the transportation of bee colonies to pollinate different farms. This has become a business where farmers need pollinators for their production of fruits, vegetables, or nuts, and have to rely on renting bees from a supplier. The bees then stay at the farm during pollination time, and continue north to the next farm as the season goes on. There are already direct correlations between hive transportation and the increased risk of brood mortality in the hive. An increase in brood mortality leads to higher necessary output of larvae by the queen, which leads to a more stressed queen. Bees have stress the same way humans do, and as the queen becomes more stressed, so do workers, putting more load on everyone in the hive. It is stated in Colony Collapse Disorder Progress Reportthat “ARS researchers and the Pennsylvania Department of Agriculture provided the first documented evidence that transportation stresses honey bee colonies. During colony transport from California to Florida, brood nest temperatures dropped 2-3°C and brood losses of migratory colonies were ten times greater than for colonies remaining in California”(24). This is an immense amount of harm caused to a colony as a whole, and while it does not point directly to Colony collapse in a hive, it certainly raises the likelihood by weakening their immune systems via stress. While bees are in this transportation, they are often given supplemental food to help them survive. This food comes in multiple ways, two of them being high fructose corn syrupor HFCS and supplementary proteins. The proteins have been found to increase the overall strength of the hive and help them defend against Varroa mites. Bee owners still choose to use HFCS on bees because it is an easy and cheap food source. However, the feeding of high fructose corn syrup, especially when improperly stored, can harm the bees immensely. When HFCS is stored improperly in trucks, the sugar can heat up and break down into an organic chemical Hydroxymethylfurfural, which has a direct link between feeding and a drop in bee health (Flynn). These additions to stress that bees already deal with obviously impacts the colonies negatively and show that the buildup of external stressors and insecticides lowers their immune system leading to a form of immunodeficiency. This deficiency is the most likely cause of CCD in the cases seen so far as the hives observed moving across the states are losing brood magnitudes faster than other hives. While not all of these hives are getting CCD, this could be because they are not yet infected with a virus that causes CCD in weakened hives. The chance of a strong, healthy hive getting CCD is nothing compared to these hives losing four times as much brood as a healthy hive.
Malnutrition of a hive is another large factor that humans overlook when taking careof their hives. As seen in the transportation of a hive, nutrition of the bees is directly related to their stress levels and an increase in hunger and lack of nutrition would lead to stressed bees. Hives are trucked all over America, and before a hive is moved from one farm to the next, the honey is extracted from the hive slides by the owners for the market. The owners of these hives care a lot about turning a profit, which means taking as much honey as possible, leaving the bees with little food. If the bee’s run out of honey stored in the hive, they will be fed HFCS which does not contain the necessary proteins for the bees, leading to malnourishment and an increase in stress in the bees.
The final solidly researched human impact on honey bees is the absolute lack of genetic diversity in honey bees caused by breeding of what is considered to be a desired bee. A lack of genetic diversity in honey bees can cause a lack of immunity to different viruses and pathogens, and a lack of diversity that leads to the inability to fight off pests that destroy a hive.
Different honey bee colonies across the world have bees with different moods, hive patterns, and most importantly resistances to pathogens and pesticides. These different hives react differently when presented a hindrance. Hives can react poorly, while some react exceptionally better, ARS researchers state that “Colonies from certain geographic locations showed greater genetic immunity to pathogens than others” (Honey Bees and Colony Collapse Disorder pg. 16) which means that introducing this gene into the population keepers use would help the bees and lead to fewer pathogens and less stress. If this gene that promotes better resistance was introduced, the amount of stress in hives could drop, while if the gene is not incorporated into hives it will be wasted. The limited genetic diversity in hives in the world is caused directly by breeders using the same strain of bee because it is what is believed to be best. While this strain of bee may be docile and produce copious amounts of honey, resistance to foreign hindrances is impaired. The introduction of higher strength immunity bees into the breeding cycle would lower the amount of stress in a bee colony, which would then lead to a lower risk of CCD in the colonies. A lower amount of viruses in a hive would be beneficial, and since ARS Researchers state that “Researchers found that the greatest predictor of CCD was the total virus load on a given colony” (Honey Bees and Colony Collapse Disorder pg.16) this would possibly make the CCD rate plummet. Humans cause the lack of diversity in the bees we use, meaning we also cause the lack of immunity our bees have against these external afflictions.
This absence of diversity among today’s bees could easily be fixed if the mass breeders took the data from researchers like ARS and applied it to their process. This could introduce the increase in immunity from pests, pesticides, weather patterns, hunger, pathogens, and most other traits that a bee has. These all have potential to be strengthened, however, humans choose to stick with bees that do not sting as willingly, and produce excess in honey to make more money.
All three of these major human errors point to the increase in Colony Collapse Disorder. The use of chemicals in bee colonies or in surrounding areas, poor hive management and bee keeping practices, and lack of genetic diversity have been proven to result in a higher chance of CCD in hives, while Bayer and followers alike claim that humans have nothing to do with the sudden increase in CCD. CCD is a serious issue, as it kills our number one pollinator of fruits, vegetables, and berries, and it will have serious consequences if nothing is done to stop the increase in cases. One third of the United States current food production is in the hands of bees, and Colony Collapse Disorder is in the hands of humans, and corporations. If the drop in hive numbers due to CCD continues at its rate shown the last 70 years, by the year 2080 the number of hives kept by humans will drop to 1.25 million. All evidence points towards humans being the leading cause of the increase in Colony Collapse in the bees, and although greed drives corporations to blame outside factors, a change needs to come before it is too late. The honey bees can be helped if we fix the pesticides used on our crops, the overall quality of hive management increases from keepers and companies, and the genes of our current bees are changed to accept more modernized bees that have higher tolerances to real threats. All of these changes would cause an immense leap in the health and strength of honey bees, lowering stress levels of the queen, workers, and hives, leading to a drop in the rates of CCD. Humans are causing this problem, and it is in humanities reach to fix the problem so that the human population does not have to suffer.