Name Freshman Radicals Packet

Mr. McCormack’s Magical Method of Reducing Radicals

Step 1: Check to see if the number is a perfect square.
 If “yes,” you are done.
 If “no,” go to next step.

Step 2: Divide the number by 2, and check to see if that number is a perfect square.
 If “yes,” you are finished. Just take the square root of the new # and leave “2” under the radical.
 If “no,” go to next step.

Step 3: Divide the original # by the biggest perfect square less than the # you got when you divided the # by 2.
 If it goes in evenly, you are finished.
 If it doesn’t go in evenly, go to next step.

Step 4: Keep trying the next biggest perfect square until you get a number that goes in evenly.

Simplify each radical:

1) √3242) √2423) √1474) √405

5) √2526) √1767) √3258) √256

9) √28810) √32011) √58812) √224

13) 4√180 + 3√40514) 7√54 – 6√486

15) 6√150 - 5√21616) 3√432 + 5√128

17) 13√363 + 7√19219) 4√720 - 8√180

19) 7√20 - 3√7520) 5√242 + 7√147

When working with a variable, you have to check whether the exponent is odd or even.

When Even: You get the square root by cutting the exponent in half.

For example: √x16  x8

When Odd: You factor it by taking one off and making it even (then you can cut it in half and leave the x under the radical):

For example: √x17  √x16 ∙ x1  x8√x1 OR x8√x

13) √x2414) √x1315) √x3016) √x51

Now combine the two:

17) √363x2018) √80x1919) √289x3620) √72x49

21) √512x2922) √125x3223) √147x4224) √625x13

25) √338x22y1126) √112x19y3127) √361x16y10028) √320x43y21

Simplify Each Radical:

1) √482) √1283) √3634) √45

5) √25x26) √72x87) √432x16y88) √392x100y210

9) √x910) √x9y1011) √x9y1112) √25x9y11

13) √162x10y514) √75x7y315) √300x5y1216) √169x100y64

17) √108x16y2518) √98x1000y50019) √600x11y1420) √288x36y144

21) √300 + √10822) √96 - √150

23) √45 + √2024) √98 - √50

25) 4√200 - 3√28826) 8√392 + 11√32

27) √75x9 - √3x928) 5√363x25 - 4√432x25

Multiplication:

1) (-3√6)(8√12) 2) (5√18)(6√24)

3) 9√2 (6√96 - 4√160)4) -7√3 (3√150 - 4√18)

5) (9 – 5√5)(8 – 3√5)6) (4 - 3√2)(7 + 5√6)

7) (8 - 3√2)(9 + 3√2)8) (-4 + 6√5)(-4 - 6√5)

Classwork:

1) (-8√8)(5√24) 2) (-6√12)(-4√27)

3) 5√3 (8√150 - 4√294)4) -9√5 (3√135 - 7√40)

5) (6 – 5√2)(-9 – 3√2)6) (-3 - 9√3)(10 + 5√6)

7) (11 - 3√6)(4 + 3√6)8) (-5 + 6√2)(-12 - 6√8)

Division:

1)Divide numbers 1st to see if you can reduce fraction.

2)Reduce each radical that is left.

3)Cancel where you can.

4)If there is still a radical in the denominator after canceling, you must RATIONALIZE THE DENOMINATOR.

9) 9√294 _10) 14√90 _11) 12√450

7√486 3√245 5√216

12) 13√605 _13) 5√243 _14) 7√96__

33√338 18√384 4√392

15) 16)

17)18)

Quiz Review:

Part I: Reducing Radicals:

1) √882x10y5 2) √245x7y3 3) √252x6y12 4) √289x100y64

5) √432x17y9 6) √605x18y11 7) √529x49y64 8) √800x33y43

9) √294x14y72 10) √980x21y26 11) √507x13y23 12) √361x41y100

Part II: Addition/Subtraction
1. 2. 3.

4. 5. 6.

Part III: Multiplication
1) (-5√12)(8√5) 2) 9√5 (6√250 - 4√180)3) -8√2 (3√150 - 4√192)
4) (-7 + 6√3)(-7 - 6√3)5) (8 – 5√3)(6 – 3√2)6) (4 - 3√2)(8 + 5√10)

Part IV: Division

1) 10√675 _2) 21√486 _3) 7√216__

25√200 27√294 4√392

4) 5)

6)7)

1