PROC IMPORT DATAFILE="/home/smithpc0/sasuser.v94/logitex.xlsx"

OUT=smithpc0

DBMS=XLSX

REPLACE;

RUN;

data work.smithpc0;

SET work.smithpc0;

ODS graphics off;

PROC SORT;

BY GPA;

RUN;

PROC REG;

TITLE 'OLS Estimation of Personalized Instruction Model';

MODEL GRADE = GPA TUCE PSI;

RUN;

COMMENT 'What follows is Weighted Least Squares - don't use this code unless you're doing WLS';

OUTPUT OUT=RESFILE PREDICTED=YHAT;

DATA TWO;

MERGE SMITHPC0 RESFILE;

BY GPA;

YHATC = (YHAT*(0<YHAT<1)) + (0.999*(YHAT>=1)) + (0.001*(YHAT<=0));

W = SQRT(YHATC*(1-YHATC));

RECIPW = 1/W;

GRADEW = GRADE/W;

GPAW = GPA/W;

TUCEW = TUCE/W;

PSIW = PSI/W;

PROC PRINT;

RUN;

PROC REG;

TITLE 'Weighted Least Squares Estimation of Linear Probability Model';

MODEL GRADEW = RECIPW GPAW TUCEW PSIW /NOINT;

RUN;

COMMENT 'End Weighted Least Squares code';

PROC LOGISTIC DESCENDING;

TITLE 'Logit Estimation of Personalized Instruction Model';

MODEL GRADE = GPA TUCE PSI /CTABLE PPROB=0.5;

RUN;

COMMENT 'PROC QLIM promising procedure for getting marginal effects';

PROC QLIM;

model GRADE = GPA TUCE PSI/ DISCRETE(D=logit);

output out=meffects marginal;

run;

proc means data=meffects;

var meff:;

run;

OLS Estimation of Personalized Instruction Model

The REG Procedure

Model: MODEL1

Dependent Variable: GRADE GRADE

Analysis of Variance
Source / DF / Sum of
Squares / Mean
Square / F Value / PrF
Model / 3 / 3.00228 / 1.00076 / 6.65 / 0.0016
Error / 28 / 4.21647 / 0.15059
Corrected Total / 31 / 7.21875
Root MSE / 0.38806 / R-Square / 0.4159
Dependent Mean / 0.34375 / Adj R-Sq / 0.3533
Coeff Var / 112.88935
Parameter Estimates
Variable / Label / DF / Parameter
Estimate / Standard
Error / tValue / Pr|t|
Intercept / Intercept / 1 / -1.49802 / 0.52389 / -2.86 / 0.0079
GPA / GPA / 1 / 0.46385 / 0.16196 / 2.86 / 0.0078
TUCE / TUCE / 1 / 0.01050 / 0.01948 / 0.54 / 0.5944
PSI / PSI / 1 / 0.37855 / 0.13917 / 2.72 / 0.0111

OLS Estimation of Personalized Instruction Model

Obs / GPA / TUCE / PSI / GRADE / YHAT / YHATC / W / RECIPW / GRADEW / GPAW / TUCEW / PSIW
1 / 2.06 / 22 / 1 / 0 / 0.06696 / 0.06696 / 0.24996 / 4.0006 / 0.00000 / 8.2413 / 88.014 / 4.00062
2 / 2.39 / 19 / 1 / 1 / 0.18855 / 0.18855 / 0.39115 / 2.5566 / 2.55656 / 6.1102 / 48.575 / 2.55656
3 / 2.63 / 20 / 0 / 0 / -0.06818 / 0.00100 / 0.03161 / 31.6386 / 0.00000 / 83.2095 / 632.772 / 0.00000
4 / 2.66 / 20 / 0 / 0 / -0.05427 / 0.00100 / 0.03161 / 31.6386 / 0.00000 / 84.1587 / 632.772 / 0.00000
5 / 2.67 / 24 / 1 / 0 / 0.37090 / 0.37090 / 0.48305 / 2.0702 / 0.00000 / 5.5274 / 49.685 / 2.07019
6 / 2.74 / 19 / 0 / 0 / -0.02766 / 0.00100 / 0.03161 / 31.6386 / 0.00000 / 86.6898 / 601.133 / 0.00000
7 / 2.75 / 25 / 0 / 0 / 0.03995 / 0.03995 / 0.19585 / 5.1060 / 0.00000 / 14.0414 / 127.649 / 0.00000
8 / 2.76 / 17 / 0 / 0 / -0.03937 / 0.00100 / 0.03161 / 31.6386 / 0.00000 / 87.3225 / 537.856 / 0.00000
9 / 2.83 / 19 / 0 / 0 / 0.01409 / 0.01409 / 0.11786 / 8.4844 / 0.00000 / 24.0107 / 161.203 / 0.00000
10 / 2.83 / 27 / 1 / 1 / 0.47661 / 0.47661 / 0.49945 / 2.0022 / 2.00219 / 5.6662 / 54.059 / 2.00219
11 / 2.86 / 17 / 0 / 0 / 0.00702 / 0.00702 / 0.08347 / 11.9810 / 0.00000 / 34.2655 / 203.676 / 0.00000
12 / 2.87 / 21 / 0 / 0 / 0.05363 / 0.05363 / 0.22530 / 4.4386 / 0.00000 / 12.7388 / 93.211 / 0.00000
13 / 2.89 / 22 / 0 / 0 / 0.07341 / 0.07341 / 0.26080 / 3.8343 / 0.00000 / 11.0811 / 84.355 / 0.00000
14 / 2.89 / 14 / 1 / 0 / 0.36800 / 0.36800 / 0.48226 / 2.0736 / 0.00000 / 5.9926 / 29.030 / 2.07356
15 / 2.92 / 12 / 0 / 0 / -0.01763 / 0.00100 / 0.03161 / 31.6386 / 0.00000 / 92.3847 / 379.663 / 0.00000

Weighted Least Squares Estimation of Linear Probability Model

The REG Procedure

Model: MODEL1

Dependent Variable: GRADEW

Note:No intercept in model. R-Square is redefined.

Analysis of Variance
Source / DF / Sum of
Squares / Mean
Square / F Value / PrF
Model / 4 / 74.64082 / 18.66020 / 22.98 / <.0001
Error / 28 / 22.73882 / 0.81210
Uncorrected Total / 32 / 97.37964
Root MSE / 0.90117 / R-Square / 0.7665
Dependent Mean / 0.91932 / Adj R-Sq / 0.7331
Coeff Var / 98.02486
Parameter Estimates
Variable / DF / Parameter
Estimate / Standard
Error / tValue / Pr|t|
RECIPW / 1 / -1.30873 / 0.28849 / -4.54 / <.0001
GPAW / 1 / 0.39817 / 0.08783 / 4.53 / <.0001
TUCEW / 1 / 0.01216 / 0.00454 / 2.68 / 0.0123
PSIW / 1 / 0.38782 / 0.10518 / 3.69 / 0.0010

Logit Estimation of Personalized Instruction Model

The LOGISTIC Procedure

Model Information
Data Set / WORK.TWO
Response Variable / GRADE / GRADE
Number of Response Levels / 2
Model / binary logit
Optimization Technique / Fisher's scoring
Number of Observations Read / 32
Number of Observations Used / 32
Response Profile
Ordered
Value / GRADE / Total
Frequency
1 / 1 / 11
2 / 0 / 21

Probability modeled is GRADE='1'.

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Criterion / Intercept Only / Intercept and Covariates
AIC / 43.183 / 33.779
SC / 44.649 / 39.642
-2 Log L / 41.183 / 25.779
Testing Global Null Hypothesis: BETA=0
Test / Chi-Square / DF / PrChiSq
Likelihood Ratio / 15.4042 / 3 / 0.0015
Score / 13.3088 / 3 / 0.0040
Wald / 8.3762 / 3 / 0.0388
Analysis of Maximum Likelihood Estimates
Parameter / DF / Estimate / Standard
Error / Wald
Chi-Square / PrChiSq
Intercept / 1 / -13.0204 / 4.9310 / 6.9723 / 0.0083
GPA / 1 / 2.8259 / 1.2629 / 5.0072 / 0.0252
TUCE / 1 / 0.0951 / 0.1415 / 0.4518 / 0.5015
PSI / 1 / 2.3785 / 1.0645 / 4.9925 / 0.0255
Odds Ratio Estimates
Effect / Point Estimate / 95% Wald
Confidence Limits
GPA / 16.877 / 1.420 / 200.567
TUCE / 1.100 / 0.833 / 1.451
PSI / 10.789 / 1.339 / 86.917
Association of Predicted Probabilities and Observed Responses
Percent Concordant / 88.3 / Somers' D / 0.766
Percent Discordant / 11.7 / Gamma / 0.766
Percent Tied / 0.0 / Tau-a / 0.357
Pairs / 231 / c / 0.883
Classification Table
Prob
Level / Correct / Incorrect / Percentages
Event / Non-
Event / Event / Non-
Event / Correct / Sensi-
tivity / Speci-
ficity / False
POS / False
NEG
0.500 / 6 / 18 / 3 / 5 / 75.0 / 54.5 / 85.7 / 33.3 / 21.7

Logit Estimation of Personalized Instruction Model

The QLIM Procedure

Discrete Response Profile of GRADE
Index / Value / Total Frequency
1 / 0 / 21
2 / 1 / 11
Model Fit Summary
Number of Endogenous Variables / 1
Endogenous Variable / GRADE
Number of Observations / 32
Log Likelihood / -12.88963
Maximum Absolute Gradient / 3.82283E-6
Number of Iterations / 17
Optimization Method / Quasi-Newton
AIC / 33.77927
Schwarz Criterion / 39.64221
Goodness-of-Fit Measures
Measure / Value / Formula
N = # of observations, K = # of regressors
Likelihood Ratio (R) / 15.404 / 2 * (LogL - LogL0)
Upper Bound of R (U) / 41.183 / - 2 * LogL0
Aldrich-Nelson / 0.325 / R / (R+N)
Cragg-Uhler 1 / 0.3821 / 1 - exp(-R/N)
Cragg-Uhler 2 / 0.5278 / (1-exp(-R/N)) / (1-exp(-U/N))
Estrella / 0.4528 / 1 - (1-R/U)^(U/N)
Adjusted Estrella / 0.2251 / 1 - ((LogL-K)/LogL0)^(-2/N*LogL0)
McFadden's LRI / 0.374 / R / U
Veall-Zimmermann / 0.5774 / (R * (U+N)) / (U * (R+N))
McKelvey-Zavoina / 0.7915
Algorithm converged.
Parameter Estimates
Parameter / DF / Estimate / Standard
Error / tValue / Approx
Pr > |t|
Intercept / 1 / -13.021347 / 4.931350 / -2.64 / 0.0083
GPA / 1 / 2.826113 / 1.262912 / 2.24 / 0.0252
TUCE / 1 / 0.095158 / 0.141555 / 0.67 / 0.5014
PSI / 1 / 2.378688 / 1.064557 / 2.23 / 0.0255

Logit Estimation of Personalized Instruction Model

The MEANS Procedure

Variable / Label / N / Mean / Std Dev / Minimum / Maximum
Meff_P1_GPA
Meff_P2_GPA
Meff_P1_TUCE
Meff_P2_TUCE
Meff_P1_PSI
Meff_P2_PSI / Marginal effect of GPA on the probability of GRADE=1
Marginal effect of GPA on the probability of GRADE=2
Marginal effect of TUCE on the probability of GRADE=1
Marginal effect of TUCE on the probability of GRADE=2
Marginal effect of PSI on the probability of GRADE=1
Marginal effect of PSI on the probability of GRADE=2 / 32
32
32
32
32
32 / -0.3625809
0.3625809
-0.0122084
0.0122084
-0.3051777
0.3051777 / 0.2354968
0.2354968
0.0079294
0.0079294
0.1982133
0.1982133 / -0.7055222
0.0674638
-0.0237555
0.0022716
-0.5938252
0.0567830 / -0.0674638
0.7055222
-0.0022716
0.0237555
-0.0567830
0.5938252

In the logit analysis, gradepoint average and tutoring both had positive effects on student grades.

The higher a student’s overall gradepoint average, the more likely the student was to receive an A in intermediate macroeconomics. Evaluated at the mean, an increase of one entire gradepoint was associated with a 36.2 percent greater probability of receiving an A. The coefficient on gradepoint average was statistically significant (p = 0.0252).

Students who received tutoring were also more likely to receive A grades in intermediate macroeconomics. Evaluated at the mean, receiving tutoring was associated with a 30.5 percent greater probability of receiving an A. The coefficient on the tutoring dummy variable was statistically significant (p = 0.0255).

The coefficient on the TUCE score was not statistically significant.

The overall equation fit well, with an Rp2 equal to 0.75 and a highly statistically significant likelihood ratio test (p = 0.0015, 2 = 15.40).