Long term changes in Zostera meadows in the Berre lagoon (Provence, Mediterranean Sea)

Estuarine, Coastal and Shelf Science, Volume 73, Issues 3-4, July 2007, Pages 617-629

Guillaume Bernard, Charles F. Boudouresque and Philippe Picon

The Berre lagoon (Provence, France), one of the largest Mediterranean brackish lagoons (155 km2), was occupied, at the turn of the 20th century, by extensive Zostera meadows (Zostera marina and probably Zostera noltii; perhaps over 6000 ha). Subsequently, the lagoon was disturbed by urban and industrial pollution and, from 1966, by the diversion of the Durance River. This resulted in a 10–49-fold and 8–31-fold increase of the freshwater and silt inputs, respectively. By means of digital analysis of aerial photographs for the years 1944, 1992, 1998 and 2004, coupled with ground truth for the last three dates, we mapped the Zostera meadows. The replacement of Z. marina by Z. noltii, the latter species being already dominant in the 1970s, was completed in 1990. In parallel to this substitution, the Zostera beds underwent a dramatic decline. Their depth limit, which was (6–9) m in the early 20th century, withdrew to 3.5, 3, 1 and less than 1 m by 1944, the 1970s, 1992 and 1998, respectively. Since 1998, Zostera must be considered as functionally extinct. The total surface area of Zostera meadows was of the order of 1.5 ha in 2004. In an attempt to alleviate disturbance, the input of freshwater and silt from the Durance River was significantly reduced from the early 1980s and 1990s respectively. Similarly, from the 1970s to the 1990s, urban and domestic pollution was drastically reduced. Despite these steps, Zostera meadows continued to shrink to near extinction. The lagoon has shifted from a system dominated by seagrass beds to a system with bare silt bottoms, which now occupy most of the lagoon. The reasons could be, in addition to continuing nutrient inputs, the resuspension of silt, no longer trapped under the seagrass canopy, during wind episodes, which are frequent in the area, and/or the release of nutrients from the bare silt habitat, which would constitute an indication of a possible hysteresis of the system. However, since 2000, the establishment of the mussel Mytilus galloprovincialis, a drop in turbidity and a slight, inconspicuous progression of Z. noltii could be the harbinger of a reverse shift of the system.

Stormwater runoff and export changes with development in a traditional and low impact subdivision

Journal of Environmental Management, In Press, Corrected Proof, Available online 4 May 2007

Michael E. Dietz and John C. Clausen

Development continues at a rapid pace throughout the country. Runoff from the impervious surfaces in these watersheds continues to be a major cause of degradation to freshwater bodies and estuaries. Low impact development techniques have been recommended to reduce these impacts. In this study, stormwater runoff and pollutant concentrations were measured as development progressed in both a traditional development, and a development that used low impact development techniques. Increases in total impervious area in each watershed were also measured. Regression relationships were developed between total impervious area and stormwater runoff/pollutant export. Significant, logarithmic increases in stormwater runoff and nitrogen and phosphorus export were found as development occurred in the traditional subdivision. The increases in stormwater runoff and pollutant export were more than two orders of magnitude. TN and TP export after development was 10 and 1 kg ha−1 yr−1, respectively, which was consistent with export from other urban/developed areas. In contrast, stormwater runoff and pollutant export from the low impact subdivision remained unchanged from pre-development levels. TN and TP export from the low impact subdivision were consistent with export values from forested watersheds. The results of this study indicate that the use of low impact development techniques on a watershed scale can greatly reduce the impacts of development on local waterways.

Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment

Environment International, Volume 32, Issue 6, August 2006, Pages 831-849

Julio A. Camargo and Álvaro Alonso

We provide a global assessment, with detailed multi-scale data, of the ecological and toxicological effects generated by inorganic nitrogen pollution in aquatic ecosystems. Our synthesis of the published scientific literature shows three major environmental problems: (1) it can increase the concentration of hydrogen ions in freshwater ecosystems without much acid-neutralizing capacity, resulting in acidification of those systems; (2) it can stimulate or enhance the development, maintenance and proliferation of primary producers, resulting in eutrophication of aquatic ecosystems; (3) it can reach toxic levels that impair the ability of aquatic animals to survive, grow and reproduce. Inorganic nitrogen pollution of ground and surface waters can also induce adverse effects on human health and economy.

Because reductions in SO2 emissions have reduced the atmospheric deposition of H2SO4 across large portions of North America and Europe, while emissions of NOx have gone unchecked, HNO3 is now playing an increasing role in the acidification of freshwater ecosystems. This acidification process has caused several adverse effects on primary and secondary producers, with significant biotic impoverishments, particularly concerning invertebrates and fishes, in many atmospherically acidified lakes and streams. The cultural eutrophication of freshwater, estuarine, and coastal marine ecosystems can cause ecological and toxicological effects that are either directly or indirectly related to the proliferation of primary producers. Extensive kills of both invertebrates and fishes are probably the most dramatic manifestation of hypoxia (or anoxia) in eutrophic and hypereutrophic aquatic ecosystems with low water turnover rates. The decline in dissolved oxygen concentrations can also promote the formation of reduced compounds, such as hydrogen sulphide, resulting in higher adverse (toxic) effects on aquatic animals. Additionally, the occurrence of toxic algae can significantly contribute to the extensive kills of aquatic animals. Cyanobacteria, dinoflagellates and diatoms appear to be major responsible that may be stimulated by inorganic nitrogen pollution. Among the different inorganic nitrogenous compounds (NH4+, NH3, NO2−, HNO2, NO3−) that aquatic animals can take up directly from the ambient water, unionized ammonia is the most toxic, while ammonium and nitrate ions are the least toxic. In general, seawater animals seem to be more tolerant to the toxicity of inorganic nitrogenous compounds than freshwater animals, probably because of the ameliorating effect of water salinity (sodium, chloride, calcium and other ions) on the tolerance of aquatic animals.

Ingested nitrites and nitrates from polluted drinking waters can induce methemoglobinemia in humans, particularly in young infants, by blocking the oxygen-carrying capacity of hemoglobin. Ingested nitrites and nitrates also have a potential role in developing cancers of the digestive tract through their contribution to the formation of nitrosamines. In addition, some scientific evidences suggest that ingested nitrites and nitrates might result in mutagenicity, teratogenicity and birth defects, contribute to the risks of non-Hodgkin's lymphoma and bladder and ovarian cancers, play a role in the etiology of insulin-dependent diabetes mellitus and in the development of thyroid hypertrophy, or cause spontaneous abortions and respiratory tract infections. Indirect health hazards can occur as a consequence of algal toxins, causing nausea, vomiting, diarrhoea, pneumonia, gastroenteritis, hepatoenteritis, muscular cramps, and several poisoning syndromes (paralytic shellfish poisoning, neurotoxic shellfish poisoning, amnesic shellfish poisoning). Other indirect health hazards can also come from the potential relationship between inorganic nitrogen pollution and human infectious diseases (malaria, cholera). Human sickness and death, extensive kills of aquatic animals, and other negative effects, can have elevated costs on human economy, with the recreation and tourism industry suffering the most important economic impacts, at least locally.

It is concluded that levels of total nitrogen lower than 0.5–1.0 mg TN/L could prevent aquatic ecosystems (excluding those ecosystems with naturally high N levels) from developing acidification and eutrophication, at least by inorganic nitrogen pollution. Those relatively low TN levels could also protect aquatic animals against the toxicity of inorganic nitrogenous compounds since, in the absence of eutrophication, surface waters usually present relatively high concentrations of dissolved oxygen, most inorganic reactive nitrogen being in the form of nitrate. Additionally, human health and economy would be safer from the adverse effects of inorganic nitrogen pollution.

The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget)

Harmful Algae, Volume 4, Issue 4, June 2005, Pages 651-672

Stéphan Jacquet, Jean-François Briand, Christophe Leboulanger, Carol Avois-Jacquet, Laura Oberhaus, Bruno Tassin, Brigitte Vinçon-Leite, Gérard Paolini, Jean-Claude Druart, Orlane Anneville and Jean-François Humbert

Lac du Bourget, in the Alps, is the largest natural French lake. Following major restoration programmes during the 1970s and early 1980s, involving massive efforts to reduce nutrient loads and pollution in the lake, the water quality has improved over the past two decades. This can be inferred from the increase in the nitrate:phosphate ratio, the intensification of the “clear-water phase” (i.e. the increase in the water column transparency in spring), and the reduction in the total phosphorus and chlorophyll a concentrations. However, blooms of the filamentous, phycoerythrin-rich, non-nitrogen fixing and hepatotoxic cyanobacterium Planktothrix rubescens have occurred since 1996 and have been maintained subsequently, at least during summer and autumn periods. Nutrients (especially phosphorus) are usually thought to be one of the most important factors responsible for cyanobacterial blooms, and so the question is asked if this bloom is a paradoxical outcome of the restoration programs? Using a large set of data taken from surveys of Lac du Bourget, from the literature, and from recent laboratory experiments, and also using field data for the neighboring Lake Geneva, we propose a realistic scenario to account for the population dynamics of the cyanobacterium and the occurrence and maintenance of the bloom in Lac du Bourget. The characteristics of the lake (high water column stability, deepening of the nutrient-depleted layer during the last decade, a long water residence time), local conditions (the nutrient load and charge) and global changes (global warming) all had to be taken into account to explain this bloom. We suggest that the success of P. rubescens in Lac du Bourget is probably due to increased transparency and a longer stratified period following (1) the restriction of other phytoplankton species following reduced phosphorus, which has allowed P. rubescens to make use of organic phosphorus to improve its competitiveness; (2) warmer than average winter/spring periods allowing an earlier water stratification and in fine a competitive advantage to P. rubescens; (3) lower than average surface irradiance, which has also given the low-light preferring P. rubescens an advantage. Finally, this study highlights the importance of long-term data sets in attempting to elucidate the global causes of a major ecological problem (such as this cyanobacterial bloom) and impacts with regard to the function and use of freshwater ecosystems.

Rapid decline of dissolved nitrogen in Finnish lakes

Journal of Hydrology, Volume 304, Issues 1-4, 10 March 2005, Pages 94-102

Seppo Rekolainen, Sari Mitikka, Jussi Vuorenmaa and Matti Johansson

Since 1960s, phosphorus (P) has been considered to be most often the limiting factor for algal growth in freshwater lakes. Due to that, pollution control measures have been targeted to reduce P loading to lakes. In many countries these efforts have been successful: the P loadings, particularly through municipal waste waters have been reduced substantially, which has resulted in reduced P concentration of lake waters, and improvements in ecological quality of numerous lakes. Nitrogen reductions in wastewater treatment plants have started only in very recent years, and usually only in cities along the seashore.

Analysis of the long-term lake monitoring data in Finland show a sharp decline of dissolved inorganic nitrogen (DIN, expressed as a sum of NO2–N, NO3–N and NH4–N) during the 1990s. Most of these lakes are oligotrophic lakes with low human impact. Due to this, the relative contribution of air-borne nitrogen loading (deposition directly to the lake surface) is often higher than in lakes located in densely populated or in intensive agricultural regions. The DIN deposition monitoring results show approximately a 40% reduction during the same period as the decreasing DIN trend is observed in lakes. These trends in deposition can probably be explained by reductions in nitrogen emissions in Europe, in connection to air pollution control conventions, and in Eastern Europe also in connection to economical collapse at the beginning of 1990s. In many of the lakes with a significant decreasing trend, DIN concentrations in late summer are approaching very low levels (<20 μg l−1), indicating that nitrogen is possibly limiting algal growth at least seasonally.

The observed trends are an example of how pollution control measures may result in a quick response, in this case unexpected, though not necessarily undesirable.

The importance of considering biological processes when setting total maximum daily loads (TMDL) for phosphorus in shallow lakes and reservoirs

Environmental Pollution, Volume 113, Issue 1, June 2001, Pages 1-9

K. E. Havens and C. L. Schelske

Total maximum daily loads (TMDL) are required by the US Environmental Protection Agency for pollutants that have impaired the designated uses of surface waters in the nation. Setting an appropriate TMDL requires quantitative information on both the external pollutant inputs and the processes affecting pollutant dynamics within the ecosystem. Here we focus on phosphorus (P), a globally important pollutant of freshwater lakes. We consider how biological processes (including those related to algae, plants, invertebrates and fish) can influence the ability of lakes to assimilate P, and in turn the ability of managers to select appropriate TMDLs. The primary focus is on shallow eutrophic lakes, with Lake Okeechobee (Florida, USA) serving as a case study. The paper deals only with in-lake processes as they relate to setting the TMDL and not the subsequent issue of load allocation among pollution sources. The results indicate that the ability of a shallow lake to assimilate P is substantially reduced when surplus levels of P occur in the water column, the phytoplankton becomes dominated by cyanobacteria, the benthic invertebrate community becomes dominated by oligochaetes, and submerged plant biomass is low. If some of these biological changes can be reversed in a rehabilitation program then the lake may be able to support a higher TMDL.

Biological processes affect lake phosphorous assimilation.

Pathological and Physiological Changes in the South African Freshwater Crab Potamonautes warreni Calman Induced by Microbial Gill Infestations