Name______Hour______

Laws of Probability: Coin Toss Lab

Few concepts have had greater effect on the science of genetics than the laws of probability. Probability refers to the chance of something happening. Under normal conditions probability calculations can give us good ideas of what to expect from different genetic combinations. A thorough understanding of probability was instrumental in leading Gregor Mendel to his basic conclusions about genetics, and these same laws of probability play an essential role in genetics today.

Objectives:

þ  Explain the role of sample size in estimating probability

þ  Calculate the probability of occurrence of a single event.

þ  Compute a percent deviation from expected values for data gathered

Materials:

·  2 coins (same size)

·  calculator

Procedure:

1.  What percent do you EXPECTED to flip for each side of the coin: ______% Heads and ______% Tails

Part 1: The Coin Toss

2.  Toss a single coin 10 times. Record the number of heads AND tails that result. Record your results below using tick marks.

3.  Calculate the percent heads you flipped: # times flipped

total # of flips

4.  Calculate the percent tails you flipped:

5.  Based only on your observed (experimental) results from #2, what do you expect to flip next, a head or tail? Explain your answer.

6.  Compare what you expected (from #1) with your observed results (from #3). Did you observe what you expected?

7.  Toss a single coin 50 times. Record the number of heads AND tails that result. Record your results below using tick marks.

8.  Calculate the percent heads you flipped: # times flipped

total # of flips

9.  Calculate the percent tails you flipped:

10.  Compare what you expected (from #1) with your observed (from #6). Did you observe what you expected?

11. Compare your answers from number 6 and number 10. Did you get “better” (more accurate) data when you flipped more times, did it not make a difference? Explain your answer.

Part 2: Calculating The Deviation

After predictions are made for a given event and actual data are gathered, the deviation, or difference between observed and expected, can be figured. This is usually expressed as a percentage and is an indication of the degree of error. If the percent deviation is small (approximately 10 % or less), we can say it is due to chance. If the value is large, other unknown factors may have entered into the experiment.

11.  Use the formula to compute the percent deviation for each trait.

% deviation = Sum of differences from expected X 100

Total occurrences

Example: A coin is tossed 10 times producing 7 heads and 3 tails. The deviation is computed as follows

Observed Expected Difference from expected

Heads 7 5 2

Tails 3 5 2 (disregard negative value}

Total 10 10 4 (sum of differences)

Occurrences

Deviation _4 = .4 X 100 = 40%

10

10 Coin Flip Trial

Observed Expected Difference from expected

Heads ______

Tails ______

Total 10 10 ______

Occurrences

Deviation =

50 Coin Flip Trial

Observed Expected Difference from expected

Heads ______

Tails ______

Total 50 50 ______

Occurrences

Deviation =

12.  What is the relationship between sample size and the degree of error for a chance occurrence? In other words, did the number of times you flipped the coin affect the degree of error? Why or why not? EXPLAIN YOUR ANSWER

13.  How do you think this lab connects to the study of genetics?