CHE 312 ______

LAST NAME, FIRST

Problem set #1

1-8 Copy the program heat1.exe from the class distribution folder to your flash or H drive. You can also download the program from the website:

https://www.csupomona.edu/~tknguyen/che312/homework.htm.

Run the program and choose problem 1-8 in any order. Solve the problems with the data provided by the program, copy the problem statement to Word. The program will check your answer and provide an answer code when you click on “Check”. Copy the answer code and paste them after the problem statement. You need to present all your work with a diagram in details to get full credit. Your work should look like this:

1) An annealing process shown below uses a hot plate operating at an elevated temperature Th. The wafer, initially at a temperature of Tw,i, is suddenly positioned at a gap separation h = 0.5 mm from the hot plate. The emissivity of both the hot plate and the wafer is 1.0. The silicon wafer has a thickness of d = 0.80 mm, a density of 2700 kg/m3, and a specific heat of 1050 J/kg×K. The thermal conductivity of the gas in the gap is 0.0436 W/m×K. The wafer is insulated at the bottom. Stefan-Boltzmann constant s = 5.67´10-8 W/m2×K4. For Th = 700oC and Tw,i = 25oC, calculate the radiative heat flux across the gap
Problem 1: Correct, Code =4313336481
Solution
The radiative heat flux across the gap
5.67´10-8[(700 + 273)4 - (25 + 273)4] = 50,370 W/m2
Box the answer(s)!