Isolation of lanthanides from spent nuclear fuel by means of high performance ion chromatography (HPIC) prior to mass spectrometric analysis – Electronic supplemental material

Names of the authors:Karen Van Hoecke, Jakob Bussé, Mireille Gysemans, Lesley Adriaensen, Andrew Dobney and Thomas Cardinaels

1

Figure S1

Experimental set-up

Elution of matrix elements

Table S1- HPIC elution programs used during experiments 1 and 2, given in Table 3 of the manuscript

Experiment 1

Time of start (min) / Time of end (min) / 0.1 M -HIBA pH 4.00 (A) (%) / 1.0 M -HIBA pH 4.00 (B) (%) / 0.1 M HNO3(C) (%) / Applied gradient (%/min)
0 / 15 / 100 / / / / / /
15 / 65 / 100 – 0 / 0 - 100 / / / + 2 (B); -2 (A)
65 / 75 / 0 / 0 / 100 / /
75 / 90 / 100 / / / / / /

Experiment 2

Time of start (min) / Time of end (min) / 0.1 M -HIBA pH 4.00 (A) (%) / 0.5 M -HIBA pH 4.50 (B) (%) / 1.0 M -HIBA pH 4.50 (C) (%) / Applied gradient (%/min)
0 / 5 / 100 / / / /
5 / 55 / 100 - 0 / 0 - 100 / 0 / + 2 (B); -2 (A)
55 / 80 / / / / / 100
80 / 82 / 0 - 100 / / / 100 – 0 / + 50 (A) ; -50 (B)
82 / 90 / 100 / / / / / /

Results

Elution of lanthanides and matrix elements

Table S2 gives an overview of experimental conditions applied in other studies on lanthanide separation that also show chromatograms.

Table S2- Overview of stationary and mobile phases used for separation of lanthanides and specific elution canditions at retention times of Nd published in literature. -HIBA = alpha hydroxy-isobutyric acid, HMB = 2-hydroxy-2-methylbutyric acid, CSA = camphor-10-sulfonic acid.

Column type / Eluent / Nd retention time (tr,Nd) (min) / Eluent concentration at tr,Nd (M) / pH at tr,Nd / Reference
Shodex IC R-621 / 0.1-1.0 M -HIBA / 39 / 0.37 / 4.3 / This study
Dionex CS-10 / 0.04-0.26 M -HIBA / 24 / 0.24 / 4.5 / Röllin et al.[1]
LUNA SCX / 0.13-0.22 M HMB / 31 / 0.19 / 4.4 / Goutelard et al. [2]
Reverse phase C18 (Merck) / 0.1 M -HIBA + 0.02 M CSA / 15 / 0.1 / 3.1 / Bera et al.[3]
Reverse phase C18 (Merck) / 0.05 – 0.3 M -HIBA / 20 / 0.12 / 6.5 / Kumar et al.[4]
Reverse phase C18 (Supelco) / 0.1 M -HIBA / 8 / 0.1 / 3.8 / Kihsoo et al.[5]
Reverse phase C18 (Merck) / 0.05 – 0.3 M -HIBA / 6.5 / 0.2 / 2.3 / Raut et al.[6]

Intermediate precision of HPIC separation of lanthanides

Table S3 contains all adjusted retention times, i.e. total retention times corrected for hold-up time of 1.95 minutes, of Dy, Gd, Eu, Sm and Nd peak maxima obtained from thirteen chromatographic separations under repeatability conditions and the 99 % confidence intervals of individual peak maxima. In addition, retention times of peak maxima found in the robustness study are given.

Table S3- Retention times of peak maxima of Dy, Gd, Eu, Sm and Nd obtained in intermediate precisionand robustness study

Intermediate precision
Run / Dy (min) / Gd (min) / Eu (min) / Sm (min) / Nd (min)
1 / 15.1 / 25.1 / 27.4 / 30.8 / 39.0
2 / 14.8 / 25.0 / 27.3 / 30.8 / 38.9
3 / 14.6 / 24.9 / 27.3 / 30.7 / 38.9
4 / 14.6 / 24.9 / 27.3 / 30.7 / 38.9
5 / 15.8 / 25.1 / 27.4 / 30.9 / 39.1
6 / 15.3 / 25.1 / 27.4 / 30.9 / 39.1
7 / 15.1 / 25.1 / 27.4 / 30.8 / 39.0
8 / 17.2 / 25.4 / 27.6 / 31.1 / 39.2
9 / 15.0 / 24.7 / 27.0 / 30.4 / 38.4
10 / 14.8 / 24.8 / 27.1 / 30.5 / 38.5
11 / 14.9 / 25.1 / 27.4 / 30.9 / 39.2
12 / 14.9 / 25.1 / 27.4 / 30.9 / 39.2
13 / 16.3 / 25.1 / 27.4 / 30.8 / 38.8
Descriptive statistics of replicates
Max / 17.2 / 25.4 / 27.6 / 31.1 / 39.2
Min / 14.6 / 24.7 / 27.0 / 30.4 / 38.4
Max - Min / 2.6 / 0.6 / 0.6 / 0.7 / 0.7
Average / 15.2 / 25.0 / 27.3 / 30.8 / 38.9
SD / 0.7 / 0.2 / 0.2 / 0.2 / 0.2
99 % CI / 13.2 - 17.3 / 24.6 - 25.4 / 26.9 - 27.8 / 30.3 - 31.3 / 38.3 - 39.6
Robustness: pH of eluent B
Run / Dy (min) / Gd (min) / Eu (min) / Sm (min) / Nd (min)
pH = 4.5 (1st run) / 15.8 / 25.1 / 27.4 / 30.9 / 39.1
pH = 4.3 / 18.4 / 26.5 / 29.0 / 32.7 / 41.6
pH = 4.7 / 12.8 / 23.6 / 25.7 / 28.9 / 36.3
pH = 4.5 (2nd run) / 15.3 / 25.1 / 27.4 / 30.9 / 39.1
Robustness: Analyte concentration
Run / Dy (min) / Gd (min) / Eu (min) / Sm (min) / Nd (min)
[Ln] = 10 mg.L-1 / 15.0 / 24.7 / 27.0 / 30.4 / 38.4
[Ln] = 0.2 mg.L-1 / 14.6 / 25.0 / 27.4 / 30.9 / 39.2
Robustness: U matrix concentration
Run / Dy (min) / Gd (min) / Eu (min) / Sm (min) / Nd (min)
[U] = 0 mg.L-1 / 13.5 / 24.5 / 26.8 / 30.3 / 38.4
[U] = 200 mg.L-1 / 13.8 / 24.6 / 26.9 / 30.4 / 38.5
[U] = 500 mg.L-1 / 14.8 / 24.8 / 27.1 / 30.5 / 38.5

Fig. S2 – Overlayed chromatograms of 13 replicate separations using the final optimized method to isolate pure fractions of Dy, Gd, Eu, Sm, Nd. Black bars at the top indicate the 99 % confidence intervals of the retention times of Dy, Gd, Eu, Sm and Nd.

Robustness of HPIC separation of lanthanides

In addition to the pH of eluent B, lanthanide analyte concentration and uranium matrix concentration were evaluated. Figure S3 shows the results of the former parameter. A lanthanide analyte concentration of 0.2 mg.L-1 was chosen precisely becausethis lies close to the limit of detection for lanthanides obtained when using the PDA detector. The scales of the primary and secondary y-axes aredifferent in order to visualize the peaks detected at low analyte concentrations.

Fig. S3 - Overlayed chromatograms indicating the robustness of the HPIC separation method when varying the analyte concentration, at 10 and 0.2 mg.L-1.

Fig. S4 - Overlayed chromatograms indicating the robustness of the HPIC separation method when varying the matrix concentration of uranium, at 0, 200 and 500 mg.L-1.

Neodymium isotope ratios by means of TIMS

References

1. Röllin S, Kopatjtic Z, Wernli B, Magyar B (1996) Determination of lanthanides and actinides in uranium materials by high-performance liquid chromatography with inductively coupled plasma mass spectrometric detection. Journal of Chromatography A 739 (1-2):139-149.

2. Goutelard F, Caussignac C, Brennetot R, Stadelmann G, Gautier C (2009) Optimization conditions for the separation of rare earth elements, americium, curium and cesium with HPLC technique. Journal of Radioanalytical and Nuclear Chemistry 282 (2):669-675.

3. Bera S, Balasubramanian R, Datta A, Sajimol R, Nalini S, Lakshmi-Narasimhan TS, Antony MP, Sivaraman N, Nagarajan K, Vasudeva-Rao PR (2013) Burn-Up Measurements on Dissolver Solution of Mixed Oxide Fuel Using HPLC-Mass Spectrometric Method. International Journal of Analytical Mass Spectrometry and Chromatography doi:10.4236/ijamsc.2013.11007

4. Kumar P, Jaison PG, Telmore VM, Sumana P, Aggarwal SK (2013) Determination of Lanthanides, Thorium, Uranium and Plutonium in Irradiated (Th, Pu)O2 by Liquid Chromatography Using α-Hydroxyiso Butyric Acid (α-HIBA). International Journal of Analytical Mass Spectrometry and Chromatography doi:10.4236/ijamsc.2013.11009

5. Kih-Soo J., Young-Shin J., Jung-Suck K., Sun-Ho H., Jong-Gu K., K. W-H (2005) Separation of Burnup Monitors in Spent Nuclear Fuel Samples by Liquid Chromatography. Bull Korean Chem Soc 26 (4):569-574.

6. Raut NM, Jaison PG, Aggarwal SK (2004) Separation and determination of lanthanides, thorium and uranium using a dual gradient in reversed-phase liquid chromatography. Journal of chromatography A 1052 (1-2):131-136.

1