International Encyclopedia of the Social Sciences

Edited by David L. Sills. The Macmillan Co & The Free Press, NY, 1968 pp. 107 - 111

SCIENTISTS

by Warren O. Hagstrom

The word "scientist" was introduced into the English language around 1840 to distinguish those who seek empirical regularities in nature from philosophers, scholars, and intellectuals in a more general sense (Ross 1962). Mathematicians and logicians are usually regarded as scientists, although mathematics ceased being regarded as an empirical science by 1890-1910, and today the rubric also covers specialists in the social sciences almost without qualification. Other European languages have no terms strictly equivalent to "scientist." The French savant, Italian scienziato, German Wissenschaftler, and Russian ucheny also refer to philosophers, historians, and other systematic scholars. The absence of a verbal distinction is sometimes reflected in the organization of science and scholarship; for example, philosophers and historians are included in the Soviet Academy of Sciences.

Persons in a wide variety of statuses and roles are described as scientists or identify themselves as scientists in English-speaking societies today. In a narrow sense, a scientist is a man of scientific knowledge—one who adds to what is known in the sciences by writing articles or books. This is perhaps the only sense in which the word should be used without qualification. However, "scientists" also engage in applied research, attempting to make discoveries which will lead to new industrial, medical, and agricultural products or processes; in industrial development, applying scientific knowledge to specific problems of innovation in production; and in the routine testing and analyzing of commodities and processes. Such persons are called applied scientists and are not easily distinguished from engineers and technicians. Persons called scientists may also engage in teaching science in institutions of higher education, in writing accounts of science for laymen, and in administration. Finally, a scientist may be defined as a person who has received a college degree in a scientific field.

The population of scientists. Estimates of the number of scientists vary according to the definition of the term and are. in any case, difficult to make. In the United States around 1962, there were more than one million persons with scientific or technical degrees, more than 275,000 members of professional scientific societies, more than 118,000 persons listed in American Men of Science, and roughly 100,000 engaged in basic or applied scientific research. The number of persons making substantial contributions to knowledge is, of course, much less than 100,000. The United States leads the world in the number of scientists. Between one-fourth and one-third of all scientists may be Americans, and most of the remainder are in the other industrialized nations. (For example, seven leading industrial nations accounted for more than 80 per cent of the articles abstracted in Chemical Abstracts in 1960. There is naturally an even greater concentration of scientific languages: English, German, Russian, and French accounted for more than 90 per cent of the more than ten thousand articles abstracted in Index Chemicus for 1963.) Many scientists move to the United States from other nations, industrialized as well as underdeveloped, to obtain better conditions for performing research; this concentration has caused concern among leaders in many nations.

The numbers cited above are changing rapidly. The growth in the number of scientists since the later middle Ages has been exponential; thus, the scientists living in 1960 probably constituted more than 90 per cent of all those who ever lived (Price 1963). The rate of growth around 1960 would double the number of research scientists in roughly fifteen years. This rate of growth, however, must decline within the next generation in developed nations.

In the United States in 1952 about half of the science doctorates were received in the physical sciences and mathematics, about 22 per cent in the biological sciences, and about 28 per cent in the social sciences, including psychology. The relative proportions in these major subareas of science have not changed much in the last half century. Social scientists constitute a much larger proportion of scientists in the United States than they do in most other nations.

Evolution of scientific roles. The concept of the scientist developed only with the professionalization of science in the first half of the nineteenth century; previously, scientific activities were a subsidiary aspect of other social roles. Florian Znaniecki (1940) has written a concise sociological account of the historical differentiation of scientific roles. In most preindustrial societies, science has been the activity of practical actors. In ancient and medieval Europe, scientists were academic and often religious teachers. Beginning about the time of Galileo's move in 1611 from the University of Padua to the court of Cosimo de' Medici in Florence, scientists left the universities, and during the seventeenth and eighteenth centuries the amateur scientist flourished: either the gentleman scientist, like Robert Boyle, or the middle-class amateur, like Joseph Priestley. Scientists again became established in universities after the French Revolution. The twentieth century has seen the rapid growth of research establishments in business firms and government agencies. Of Americans receiving the doctorate in 1958, 56 per cent of the physical scientists, 31 per cent of the biological scientists, and 19 per cent of the social scientists took employment in industry or government. In the United States, most basic research is conducted in academic settings, but most of it is conducted in nonacademic research institutes in the Soviet Union and in some western European nations.

Scientific careers

Roughly 90 per cent of American physical scientists, and slightly smaller proportions of biological and social scientists, are men. Like other professionals, they are recruited disproportionately from upper-middle-class families; but, unlike others, they are much less likely to be from Roman Catholic families and more likely to be from Protestant or Jewish families than would be expected by chance. During the interwar years, a small number of small liberal arts colleges contributed a disproportionately large share of those who went on to become scientists. Much of this resulted from selective recruitment into these colleges, but some probably resulted from their distinctive scholarly ethos. The growth of scientific education has been accompanied by a growth in the proportion of scientists produced by large public and private undergraduate institutions.

Education. Scientific education was revolutionized in nineteenth-century Germany by the dissertation: the requirement that the student conduct original research before receiving a degree. This innovation was soon copied in other nations. Today scientific education is prolonged and highly specialized, especially in its later stages. The dissertation research is usually conducted in a quasiapprenticeship relation with a university professor, and students often make significant contributions to the research of their professors. Almost allAmerican graduate students in the sciences receive stipends for this work. The median number of years elapsed between the bachelor’s degree and the doctorate for Americans receiving the doctorate in 1957 was six in the physical sciences, seven in the biological sciences, and eight in the social sciences (see Berelson 1960 on this and other aspects of graduate education).

Although many American universities give advanced training in the sciences (110 gave doctorates in chemistry in 1960), students tend to be concentrated in those institutions best known for basic research; the 15 universities with highest prestige accounted for almost half the doctorates in the sciences in 1957. The best graduate schools tend to recruit students from the best undergraduate schools, and their students are much more likely to be employed in leading universities than are graduates of institutions of lesser renown. Among those receiving advanced degrees, those who do best academically and identify most closely with their professors are most likely to go on to do research and teaching in universities; government and industrial laboratories tend to recruit those who do less well and are less committed to a research career.

Career mobility. There is now considerable mobility between universities and research establishments in government and industry; for example, more than one-third of American chemists have been employed in at least two of the three locales (Strauss & Rainwater 1962, chapter 6). The barriers to mobility of this sort were much greater before World War II and apparently are suit great in most of the countries of Western Europe. There is much less mobility between the major fields of science because of the specialized education required to enter any one of them.

Scientists in all types of establishments are likely to combine research with other activities; a large majority of scientists combine research with such other activities as teaching, administration, and technical consultation. Vertical mobility takes different forms in different locales. Advancement in universities does not usually involve a qualitative change in the nature of the work; it still involves teaching and research. In government, and especially in industry, vertical mobility often involves advancement to administrative positions and the abandonment of research; many firms recruit managers for line operations from among their research scientists (Kornhauser 1962, chapter 5).

Incentives and occupational personality

Scientists in basic research are strongly motivated to solve intellectual problems that they regard as intrinsically important, but the most important social incentive for them is their desire to obtain recognition from their colleagues for their research accomplishments. This desire leads the scientist to publish his results, and it influences his decisions in the selection of research problems and methods. Scientists compete strenuously to be the first to publish discoveries, and simultaneous discoveries by two or more scientists occur frequently. When there is some question about which scientist made a discovery first, a priority dispute may arise. The frequency of such disputes and the intense bitterness which often accompanies them are telling evidence of the value scientists place upon the esteem of their colleagues (Merton 1957; 1963); however, priority disputes have become less frequent in the twentieth century. Industrial and governmental research establishments which conduct applied or secret research make it more difficult for their scientific employees to be recognized, and such establishments must offer relatively high salaries to scientists in order to induce them to accept this deficiency.

Values and personality. Compared with nonscientists, scientists are more inclined to prize the recognition of their colleagues and their professional autonomy above the rewards of income, organizational power, and community prestige. They are nevertheless among the most prestigious occupational groups. "Scientists" were ranked third in prestige among 90 occupations—just behind U.S. Supreme Court justices and physicians—by a cross section of the U.S. population in 1963; some scientific specialties were, however, ranked a good deal lower. There is some evidence that these distinctive occupational values characterize scientists even as university undergraduates (Rosenberg 1957; Davis 1966).

Many of the distinctive personality characteristics of scientists also appear to be produced more by selection than by university or occupational socialization. Scientists tend to be highly intelligent; possessors of U.S. doctorates in the sciences have a mean IQ of over 130 (from a population with mean 100 and standard deviation 20), which is not much different from the mean IQ of similarly qualified persons in other fields or the mean IQ of medical and law school graduates (Price 1963, chapter 2). Although the evidence is sketchy and incomplete, and although there is much variation among scientists, it also appears that physical and biological scientists tend to be "intensely masculine," to avoid close interpersonal contacts, and to avoid and be disturbed by emotions of hostility and dependency. These characteristics may help generate the scientist's desire for recognition for his accomplishments from his colleagues. Physical scientists tend to like music and dislike poetry and art. As might be expected, creative scientists are unusually hardworking, to the extent of appearing almost obsessed with their work (see Research Conference . . . 1963 for summaries of studies on the personality characteristics of scientists). Stereotypes of scientists held by high school and university students are in crude accord with these psychological findings (Mead & Metraux 1957-1958; Beardslee & O'Dowd 1961).

It has been argued that the values of the Puritans —rational mastery of one's environment, worldly activity for the glorification of God, and individualism—helped to motivate them to pursue science in seventeenth-century England, and have resulted, even today, in a higher valuation of science among Protestants than among Roman Catholics; this is a matter of dispute, however (Merton 1939; Feuer 1963). In any case, scientists today are among the least religious groups in the American population, with respect to both religious beliefs and religious practices. Those in the behavioral and biological sciences, where religion and science are most likely to come into conflict, are least likely to be religious. Scientists also tend to support parties of the left in national politics. With regard to both religion and politics, there is evidence that the more productive scientists are less conservative than the less productive.

Scientific productivity. It is generally difficult to account for variations in scientific productivity in terms of personality or background variables. There is great variation in productivity; the probability that a scientist will produce n or more papers (if he produces at least one) is roughly proportional to 1/n, and 50 per cent of the papers are written by about 6 per cent of the scientists (Price 1963, table 2, p. 45). The best background predictors of scientific productivity are the times required to get the doctorate and college grades, but these account for little of the variation. Contrary to common belief, productivity does not decline with age until advanced ages, 60 or over, are reached.

Social contexts may have greater effects on productivity, but these effects are not readily distinguished from the selectivity of-the contexts themselves. Graduates and faculty of leading universities are more productive than others. Scientists who have adequate facilities and research assistance are more productive than those who do not, and those who maintain continuity in their research topics are more productive than those who do not. However, the kinds of contacts with colleagues and the quality of specialization make a difference. Scientists who perform multiple functions, combining research with teaching or administration, have been shown to be more productive than those who devote full time to research. Scientists who have frequent contacts with colleagues possessing different research interests are more productive than those with few contacts or contacts only with others of very similar interests. Social isolation especially is associated with low productivity for most scientists; this is a major handicap for scientists working in underdeveloped nations.

The organization of science

Scientists engaged in basic research are necessarily given considerable autonomy. If they are not free to evaluate the truth or falsehood of theories or the adequacy of research findings, science ceases to exist; and scientists also are usually free to select research problems and techniques within broad limits. Such autonomy exists in many universities and in a few governmental and industrial establishments. University departments place some restrictions on this freedom; for example, some research in logic or statistics may be felt to be not "really" mathematics, and scientists in mathematics departments may be discouraged from performing it. This may produce organizational strains, and these strains are sometimes resolved by the differentiation of existing disciplines and departments. The number of recognizably different scientific disciplines probably trebled between 1900 and 1960, and the formation of new disciplines shows no signs of stopping.

The autonomy of basic scientists conflicts with a frequent need to engage in cooperative research. Traditionally this conflict has been resolved by forming temporary teams of freely collaborating scientists or teams of a professor and his students. More recently, in fields like nuclear physics, cooperative research has been formalized; permanent groups of professional scientists are formed in which authority is centralized and a formal division of labor is established. In most fields in universities, however, the traditional forms of teamwork are much more common than such formally organized groups.

Industry and government. The importance that scientists place upon purely scientific goals, their desire to be autonomous, and their sensitivity to the responses of their disciplinary colleagues produce strains when they are employed by industrial and governmental agencies to help achieve practical goals. For example, the desire to select their own research problems leads them to resist accepting directions from organization superiors. Also, scientists tend to prefer working in units with their disciplinary colleagues to working in professionally heterogeneous groups that are organized on the basis of industrial functions; and the desire to inform others of their discoveries conflicts with requirements of industrial and military secrecy. The typical industrial incentives of salary and power are less important for scientists than for other categories of employees, and, if scientists accept these incentives as primary, their commitments to scientific values and their scientific competences may be eroded.

Various ways have evolved for accommodating industrial organization and the typical organization of the scientific community (Kornhauser 1962). Industrial scientists are selected from among those most willing to accept the importance of industrial goals, and occupational socialization furthers this acceptance. In addition, industrial research organizations are often differentiated into fundamental research units and units more directly involved in practical tasks, and scientists are assigned to different units on the basis of interests and skills. Research supervisors are recruited from among superior scientists and tend to use persuasion more than formal direction. "Parallel hierarchies" of advancement may be offered, so that some scientists are promoted to positions giving them greater autonomy in research, while others are promoted to administrative positions. Finally, the patent system and similar procedures make it possible for scientists to publish some research findings while safeguarding the proprietary interests of firms in discoveries. These types of accommodations make possible the incorporation of scientists into industry without the sterilization of science.