Additional Material Section
Grafting of arginine and glutamic acid onto cellulose for enhanced uranyl sorption
Mina N. El-Bohya , Yasser K. Abdel-Monemb, K.A. Rabiea, N.M. Farga,
Ahmed A. Galhouma,c, Eric Guibalc,*
a Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt.
b Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
c Ecole des Mines Alès, Centre des Matériaux des Mines d’Alès, 6 avenue de Clavières,
F-30319 Alès cedex, France.
11
Figure AM1: SEM and SEM-EDX analyses of cellulose (a/b), Arg-Cell (c/d) and Glu-Cell (e/f) (before/after U sorption).
11
Figure AM2: X-ray diffraction (XRD) patterns for cellulose, Arg-Cell and Glu-Cell.
Table AM1: Crystallographic properties of sorbents
Sorbent / Peak Position (2θ) / d-spacing (Ǻ) / Relative intensity (%)Cellulose / 15.195 / 5.826 / 25.37
16.196 / 5.468 / 25.04
22.617 / 3.928 / 100
28.493 / 3.130 / 6.2
34.565 / 2.595 / 11.97
Arg-Cell / 20.589 / 4.310 / 93.44
Glu-Cell / 21.401 / 4.149 / 100
Figure AM3: Thermogravimetric analysis (TGA) of cellulose (a), Arg-Cell (b) and Glu-Cell (c).
Figure AM4: FTIR spectra of cellulose (a), chlorinated cellulose (b), Arg-Cell (c) and Glu-Cell (d).
Figure AM5: pH effect on UO22+ sorptionusing Cellulose, Arg-Cell and Glu-Cell: (a) sorption capacity vs. initial pH and (b) pH variation during UO22+ sorption (C0: 50 mg U L-1; sorbent dosage (SD): 0.4 g L-1; T: 25 ± 1 °C; contact time: 3 h).
Figure AM6: Modeling of uptake kinetics with the PFORE (dashed lines), the PSORE (solid lines) (C0: 50 mg U L-1; SD: 0.4 g L-1; T: 25 ± 1 °C; pHi: 5).
Figure AM7: Modeling of uptake kinetics with the sRIDE (C0: 50 mg U L-1; SD: 0.4 g L-1; T: 25 ± 1 °C; pHi: 5).
Figure AM8: Modeling of sorption isotherms with the Langmuir equation (a), the Freundlich equation (b) and the Dubinin-Radushkevich equation (c) (SD: 0.4 g L-1; T: 25 ± 1 °C; pHi: 5).
11