*************************************************

* Geographically Weighted Regression *

* Release 3.0.1 *

* Dated: 06-vii-2003 *

* *

* Martin Charlton, Chris Brunsdon *

* Stewart Fotheringham *

* (c) University of Newcastle upon Tyne *

*************************************************

Program starts at: Tue May 27 17:11:11 2008

** Program limits:

** Maximum number of variables..... 52

** Maximum number of observations.. 80000

** Maximum number of fit locations. 80000

struttura

** Observed data file: C:\Documents and Settings\Msassi\Desktop

** Prediction location file: Estimation at sample point locations

** Result output file: C:\Documents and Settings\Msassi\Desktop

** Variables in the data file...

ID Lati Long Tyto Lnyo lnst

** Dependent (y) variable...... Tyto

** Easting (x-coord) variable.....Lati

** Northing (y-coord) variable.....Long

** No weight variable specified

** Independent variables in your model...

Lnyo lnst

** Kernel type: Adaptive

** Kernel shape: Bi-Square

** Bandwidth selection by AICc minimisation

** Use all regression points

** Calibration history requested

** Prediction report requested

** Output estimates to be written to .txt file

** Monte Carlo significance tests for spatial variation

** Casewise diagnostics to be printed

*** Analysis method ***

*** Geographically weighted multiple regression

** Cartesian coordinates: Euclidean Distance

***************************************************************

* *

* GEOGRAPHICALLY WEIGHTED GAUSSIAN REGRESSION *

* *

***************************************************************

Number of data cases read: 97

Observation points read...

Dependent mean= 0.0315051526

Number of observations, nobs= 97

Number of predictors, nvar= 2

Observation Easting extent: 9.56700039

Observation Northing extent: 10.8660002

*Finding bandwidth...

... using all regression points

This can take some time...

*Calibration will be based on 97 cases

*Adaptive kernel sample size limits: 10 97

*AICc minimisation begins...

Bandwidth AICc

36.884478565000 -420.621075018794

53.500000000000 -414.087237267044

26.615521556596 -418.105745507336

43.231042991596 -419.167387754438

32.962086029639 -419.758573652801

39.308650456235 -420.265616547112

35.386257938614 -420.243295302634

37.810429829849 -420.183957691860

36.312209210240 -420.262540498648

** Convergence after 9 function calls

** Convergence: Local Sample Size= 37

**********************************************************

* GLOBAL REGRESSION PARAMETERS *

**********************************************************

Diagnostic information...

Residual sum of squares...... 0.089675

Effective number of parameters.. 3.000000

Sigma...... 0.030887

Akaike Information Criterion.... -393.959681

Coefficient of Determination.... 0.353946

Adjusted r-square...... 0.333105

Parameter Estimate Std Err T

------

Intercept 0.169168625292 0.027912591464 6.060656547546

Lnyo -0.046154291727 0.007656559566 -6.028071880341

lnst 0.000816297822 0.001659573155 0.491872161627

**********************************************************

* GWR ESTIMATION *

**********************************************************

Fitting Geographically Weighted Regression Model...

Number of observations...... 97

Number of independent variables... 3

(Intercept is variable 1)

Number of nearest neighbours...... 37

Number of locations to fit model.. 97

Diagnostic information...

Residual sum of squares...... 0.047495

Effective number of parameters.. 17.359380

Sigma...... 0.024421

Akaike Information Criterion.... -418.170212

Coefficient of Determination.... 0.657828

Adjusted r-square...... 0.582296

**********************************************************

* CASEWISE DIAGNOSTICS *

**********************************************************

Obs Observed Predicted Residual Std Resid R-Square Influence Cook's D

------

1 0.03700 0.05990 -0.02290 -0.498655 0.559325 0.194587 0.003461

2 -0.02300 0.00222 -0.02522 -0.519769 0.735506 0.100867 0.001746

3 -0.01500 -0.02266 0.00766 0.196866 0.789139 0.422693 0.001635

4 -0.02200 -0.00176 -0.02024 -0.458207 0.687880 0.255253 0.004145

5 0.00400 0.03332 -0.02932 -0.593180 0.776896 0.067217 0.001461

6 0.00900 0.01140 -0.00240 -0.049285 0.734396 0.092038 0.000014

7 0.10100 0.08246 0.01854 0.396112 0.764878 0.163590 0.001768

8 0.04700 0.03514 0.01186 0.263193 0.722189 0.224850 0.001158

9 0.05400 0.05847 -0.00447 -0.093908 0.825761 0.136308 0.000080

10 0.08900 0.09934 -0.01034 -0.243569 0.768757 0.311392 0.001545

11 0.01400 0.00418 0.00982 0.204760 0.817580 0.121774 0.000335

12 -0.04600 -0.00064 -0.04536 -0.913612 0.744202 0.059022 0.003016

13 0.04800 0.04877 -0.00077 -0.015701 0.726128 0.076315 0.000001

14 0.08200 0.07363 0.00837 0.192816 0.859264 0.280320 0.000834

15 -0.00200 -0.00162 -0.00038 -0.008581 0.827679 0.241266 0.000001

16 0.01100 0.05047 -0.03947 -0.834800 0.687227 0.146600 0.006896

17 0.04800 0.06193 -0.01393 -0.296167 0.581943 0.155867 0.000933

18 0.05800 0.07539 -0.01739 -0.363671 0.781012 0.127376 0.001112

19 0.05400 0.06295 -0.00895 -0.182068 0.765475 0.078164 0.000162

20 0.04800 0.05347 -0.00547 -0.115264 0.626734 0.140221 0.000125

21 0.07500 0.06369 0.01131 0.232574 0.672813 0.096693 0.000334

22 -0.02900 0.02051 -0.04951 -1.009137 0.795502 0.081216 0.005186

23 0.02100 0.00706 0.01394 0.298251 0.753951 0.166498 0.001024

24 0.01400 0.05752 -0.04352 -0.911771 0.677162 0.130028 0.007158

25 -0.01000 -0.01551 0.00551 0.124329 0.891570 0.249864 0.000297

26 0.08300 0.07192 0.01108 0.243252 0.668257 0.207943 0.000895

27 -0.00400 0.01020 -0.01420 -0.301525 0.731917 0.153588 0.000950

28 0.05800 0.05796 0.00004 0.001008 0.592256 0.484126 0.000000

29 0.05200 0.03976 0.01224 0.248337 0.731316 0.073137 0.000280

30 0.01500 0.03036 -0.01536 -0.317147 0.701011 0.103989 0.000672

31 0.02400 0.03954 -0.01554 -0.316734 0.769186 0.081341 0.000512

32 0.07200 0.06725 0.00475 0.109093 0.732292 0.275334 0.000260

33 0.04700 0.02024 0.02676 0.547664 0.770026 0.088461 0.001677

34 0.01300 0.01318 -0.00018 -0.003773 0.747083 0.119935 0.000000

35 -0.01100 0.03483 -0.04583 -1.147098 0.838780 0.390480 0.048560

36 0.01500 -0.00794 0.02294 0.484755 0.719256 0.145112 0.002298

37 0.11000 0.07890 0.03110 0.650026 0.780544 0.125889 0.003505

38 -0.04300 -0.04054 -0.00246 -0.066548 0.805335 0.479547 0.000235

39 0.08000 0.05623 0.02377 0.486064 0.770714 0.087240 0.001301

40 0.02600 0.01373 0.01227 0.256593 0.751901 0.126898 0.000551

41 0.06600 0.04893 0.01707 0.350979 0.677644 0.096946 0.000762

42 0.05200 0.04012 0.01188 0.278313 0.776914 0.304749 0.001956

43 0.03800 0.02134 0.01666 0.338317 0.723426 0.073951 0.000527

44 -0.00800 -0.01789 0.00989 0.219142 0.803534 0.222334 0.000791

45 -0.00800 0.00683 -0.01483 -0.309967 0.732076 0.125723 0.000796

46 -0.00300 0.02258 -0.02558 -0.531331 0.772342 0.114903 0.002111

47 -0.00500 -0.00558 0.00058 0.013516 0.843173 0.295928 0.000004

48 0.02200 0.03204 -0.01004 -0.207482 0.814878 0.105881 0.000294

49 0.06400 0.05770 0.00630 0.129416 0.712794 0.093923 0.000100

50 0.06200 0.05701 0.00499 0.100865 0.659894 0.064129 0.000040

51 0.01600 -0.00340 0.01940 0.413053 0.754511 0.158012 0.001844

52 0.06900 0.05743 0.01157 0.242446 0.761246 0.130669 0.000509

53 0.08900 0.06033 0.02867 0.660808 0.751462 0.281445 0.009853

54 -0.02000 -0.00060 -0.01940 -0.412692 0.742678 0.156212 0.001816

55 0.05800 0.04291 0.01509 0.311639 0.760519 0.105372 0.000659

56 0.03700 0.03615 0.00085 0.017516 0.844477 0.092832 0.000002

57 -0.03900 -0.02170 -0.01730 -0.369731 0.759964 0.164397 0.001549

58 0.00400 -0.00410 0.00810 0.183046 0.698430 0.252731 0.000653

59 0.00400 0.02014 -0.01614 -0.350011 0.795244 0.187708 0.001631

60 0.03500 0.03453 0.00047 0.009441 0.797849 0.058444 0.000000

61 0.05600 0.03970 0.01630 0.353674 0.848724 0.189157 0.001681

62 0.00500 0.02238 -0.01738 -0.430845 0.730387 0.378794 0.006520

63 0.07600 0.00982 0.06618 1.387102 0.717420 0.130955 0.016702

64 0.00600 0.02250 -0.01650 -0.344345 0.826129 0.123725 0.000964

65 0.04700 0.05190 -0.00490 -0.107732 0.736379 0.211413 0.000179

66 0.07900 0.04652 0.03248 0.672713 0.716444 0.109911 0.003219

67 0.07500 0.06365 0.01135 0.241241 0.601922 0.154207 0.000611

68 0.05900 0.08001 -0.02101 -0.500458 0.754734 0.327030 0.007011

69 0.05900 0.05607 0.00293 0.059813 0.659209 0.086729 0.000020

70 0.04400 0.04764 -0.00364 -0.075292 0.801344 0.106907 0.000039

71 0.06400 0.05815 0.00585 0.125258 0.729999 0.168229 0.000183

72 0.09000 0.06693 0.02307 0.559684 0.791439 0.351141 0.009765

73 0.03400 0.02044 0.01356 0.279626 0.714721 0.102384 0.000514

74 0.04100 0.04675 -0.00575 -0.138510 0.725180 0.342734 0.000576

75 0.07500 0.06419 0.01081 0.221536 0.761205 0.090849 0.000283

76 0.02800 0.00433 0.02367 0.482206 0.727173 0.079770 0.001161

77 -0.03500 0.01889 -0.05389 -1.109591 0.666398 0.099515 0.007838

78 0.07500 0.05445 0.02055 0.519667 0.626290 0.403053 0.010504

79 0.00300 0.02181 -0.01881 -0.438257 0.841933 0.296501 0.004663

80 0.04100 0.04865 -0.00765 -0.157566 0.691470 0.099662 0.000158

81 0.01900 0.04296 -0.02396 -0.485159 0.783279 0.069153 0.001007

82 0.00500 0.04744 -0.04244 -1.112461 0.705357 0.444429 0.057029

83 -0.02100 0.01139 -0.03239 -0.722786 0.739084 0.233366 0.009161

84 0.02400 0.05440 -0.03040 -0.629046 0.603329 0.108346 0.002770

85 0.05800 0.06214 -0.00414 -0.087615 0.868847 0.147746 0.000077

86 0.03600 0.04952 -0.01352 -0.280200 0.801877 0.111056 0.000565

87 -0.03000 -0.01099 -0.01901 -0.521429 0.841518 0.492735 0.015214

88 -0.00500 0.02603 -0.03103 -0.670960 0.835114 0.183424 0.005825

89 0.07300 0.06061 0.01239 0.378767 0.748365 0.591530 0.011968

90 0.00700 -0.00770 0.01470 0.309450 0.747979 0.138140 0.000884

91 0.08200 0.04853 0.03347 0.684941 0.795307 0.088435 0.002622

92 -0.03900 0.01247 -0.05147 -1.067594 0.748507 0.112723 0.008341

93 -0.03700 -0.00921 -0.02779 -0.564007 0.739981 0.073374 0.001451

94 0.01800 0.03530 -0.01730 -0.357734 0.848693 0.106991 0.000883

95 0.08100 0.07215 0.00885 0.196323 0.672464 0.223620 0.000640

96 0.05300 0.04604 0.00696 0.148174 0.789875 0.157184 0.000236

97 0.07300 0.03317 0.03983 0.809212 0.656848 0.075138 0.003065

** Results written to .txt file

Predictions from this model...

Obs Y(i) Yhat(i) Res(i) X(i) Y(i)

1 0.037 0.060 -0.023 37.300 13.600 F

2 -0.023 0.002 -0.025 44.917 8.617 F

3 -0.015 -0.023 0.008 43.617 13.517 F

4 -0.022 -0.002 -0.020 43.467 11.883 F

5 0.004 0.033 -0.029 42.850 13.567 F

6 0.009 0.011 -0.002 44.883 8.200 F

7 0.101 0.082 0.019 40.917 14.783 F

8 0.047 0.035 0.012 41.117 16.883 F

9 0.054 0.058 -0.004 46.133 12.217 F

10 0.089 0.099 -0.010 41.133 14.767 F

11 0.014 0.004 0.010 45.700 9.667 F

12 -0.046 -0.001 -0.045 45.567 8.050 F

13 0.048 0.049 -0.001 44.500 11.350 F

14 0.082 0.074 0.008 46.500 11.333 F

15 -0.002 -0.002 0.000 44.533 10.200 F

16 0.011 0.050 -0.039 40.650 17.933 F

17 0.048 0.062 -0.014 37.483 14.067 F

18 0.058 0.075 -0.017 41.567 14.650 F

19 0.054 0.063 -0.009 41.067 14.317 F

20 0.048 0.053 -0.005 37.500 15.083 F

21 0.075 0.064 0.011 38.900 16.583 F

22 -0.029 0.021 -0.050 42.350 14.167 F

23 0.021 0.007 0.014 45.800 9.083 F

24 0.014 0.058 -0.044 39.283 16.250 F

25 -0.010 -0.016 0.006 45.133 10.033 F

26 0.083 0.072 0.011 39.083 17.133 F

27 -0.004 0.010 -0.014 44.400 7.550 F

28 0.058 0.058 0.000 37.567 14.267 F

29 0.052 0.040 0.012 44.833 11.633 F

30 0.015 0.030 -0.015 43.767 11.250 F

31 0.024 0.040 -0.016 41.467 15.550 F

32 0.072 0.067 0.005 44.217 12.050 F

33 0.047 0.020 0.027 41.633 13.367 F

34 0.013 0.013 0.000 44.417 8.917 F

35 -0.011 0.035 -0.046 45.950 13.633 F

36 0.015 -0.008 0.023 43.883 8.017 F

37 0.110 0.079 0.031 41.600 14.233 F

38 -0.043 -0.041 -0.002 44.117 9.833 F

39 0.080 0.056 0.024 42.350 13.400 F

40 0.026 0.014 0.012 41.467 12.883 F

41 0.066 0.049 0.017 40.350 18.183 F

42 0.052 0.040 0.012 45.850 9.383 F

43 0.038 0.021 0.017 43.550 10.317 F

44 -0.008 -0.018 0.010 45.317 9.500 F

45 -0.008 0.007 -0.015 43.850 10.517 F

46 -0.003 0.023 -0.026 43.300 13.450 F

47 -0.005 -0.006 0.001 45.150 10.783 F

48 0.022 0.032 -0.010 44.333 10.083 F

49 0.064 0.058 0.006 40.683 16.600 F

50 0.062 0.057 0.005 38.183 15.567 F

51 0.016 -0.003 0.019 45.467 9.183 F

52 0.069 0.057 0.012 44.650 10.917 F

53 0.089 0.060 0.029 40.350 14.250 F

54 -0.020 -0.001 -0.019 45.450 8.633 F

55 0.058 0.043 0.015 45.400 11.883 F

56 0.037 0.036 0.001 44.800 10.350 F

57 -0.039 -0.022 -0.017 45.183 9.167 F

58 0.004 -0.004 0.008 43.117 12.400 F

59 0.004 0.020 -0.016 43.900 12.917 F

60 0.035 0.035 0.000 42.450 14.217 F

61 0.056 0.040 0.016 45.050 9.683 F

62 0.005 0.022 -0.017 43.717 10.400 F

63 0.076 0.010 0.066 43.933 10.917 F

64 0.006 0.022 -0.016 45.950 12.650 F

65 0.047 0.052 -0.005 40.633 15.817 F

66 0.079 0.047 0.032 43.883 11.100 F

67 0.075 0.064 0.011 36.933 14.733 F

68 0.059 0.080 -0.021 44.417 12.200 F

69 0.059 0.056 0.003 38.100 15.650 F

70 0.044 0.048 -0.004 44.700 10.633 F

71 0.064 0.058 0.006 42.367 12.867 F

72 0.090 0.067 0.023 44.067 12.567 F

73 0.034 0.020 0.014 41.900 12.483 F

74 0.041 0.047 -0.006 45.067 11.800 F

75 0.075 0.064 0.011 40.683 14.767 F

76 0.028 0.004 0.024 44.317 8.467 F

77 -0.035 0.019 -0.054 43.317 11.300 F

78 0.075 0.054 0.021 37.067 15.283 F

79 0.003 0.022 -0.019 46.183 9.883 F

80 0.041 0.049 -0.008 40.467 17.233 F

81 0.019 0.043 -0.024 42.667 13.717 F

82 0.005 0.047 -0.042 42.567 12.667 F

83 -0.021 0.011 -0.032 45.067 7.700 F

84 0.024 0.054 -0.030 38.017 12.533 F

85 0.058 0.062 -0.004 46.067 11.133 F

86 0.036 0.050 -0.014 45.667 12.250 F

87 -0.030 -0.011 -0.019 45.650 13.767 F

88 -0.005 0.026 -0.031 46.067 13.233 F

89 0.073 0.061 0.012 45.733 7.317 F

90 0.007 -0.008 0.015 45.833 8.817 F

91 0.082 0.049 0.033 45.433 12.350 F

92 -0.039 0.012 -0.051 45.933 8.550 F

93 -0.037 -0.009 -0.028 45.333 8.417 F

94 0.018 0.035 -0.017 45.450 11.000 F

95 0.081 0.072 0.009 38.667 16.010 F

96 0.053 0.046 0.007 45.550 11.550 F

97 0.073 0.033 0.040 42.550 12.117 F

**********************************************************

* ANOVA *

**********************************************************

Source SS DF MS F

OLS Residuals 0.1 3.00

GWR Improvement 0.0 14.36 0.0029

GWR Residuals 0.0 79.64 0.0006 4.9256

**********************************************************

* PARAMETER 5-NUMBER SUMMARIES *

**********************************************************

Label Minimum Lwr Quartile Median Upr Quartile Maximum

------

Intrcept 0.052657 0.164773 0.268217 0.307345 0.337338

Lnyo -0.095874 -0.084045 -0.072616 -0.046491 -0.003090

lnst -0.009281 -0.005868 -0.002002 -0.000266 0.003030

<------LOWER ------<------UPPER ------>

Label Far Out Outer Fence Outside Inner Fence Inner Fence Outside Outer Fence Far Out

------

Intrcept 0 -0.262944 0 -0.049086 0.521203 0 0.735062 0

Lnyo 0 -0.196708 0 -0.140377 0.009841 0 0.066172 0

lnst 0 -0.022676 0 -0.014272 0.008138 0 0.016541 0

*************************************************

* *

* Test for spatial variability of parameters *

* *

*************************************************

Tests based on the Monte Carlo significance test

procedure due to Hope [1968,JRSB,30(3),582-598]

Parameter P-value

------

Intercept 0.07000 n/s

Lnyo 0.00000 ***

lnst 0.41000 n/s

*** = significant at .1% level

** = significant at 1% level

* = significant at 5% level

Program terminates normally at: Tue May 27 17:11:11 2008