C3 Chapter 7

FURTHER TRIGONOMETRIC IDENTITIES

ADDITION FORMULAE

Remember that:

It is easily verified that sin(A + B) ≠ sinA + sin B

One counter-example is all that is needed

e.g.Let A = 30º and B = 45º

Then sin(A + B) = sin 75º = 0.9659…

and sin 30º + sin 45º = 1.2071…

so sin(30º + 45º) ≠ sin30º + sin45º

In fact:

(You do not need to know how to derive these formulae)

You can deduce the results from each other

Example 1

In sin(A + B) = sin A cos B + cos A sin B,

replace A with (90º - A)

Replace B by –B

Hence we have:

Example 2

Prove the identity


Example 3

Ex 7A p 99

DOUBLE ANGLE FORMULAE

In the formula sin (A + B) = sin A cos B + cos A sin B, let A = B

Therefore, sin (A + A) = sin A cos A + cos A sin A

sin 2A = 2 sin A cos A

Hence the sine double angle formula:

In the formula cos (A + B) = cos A cos B – sin A sin B, let A = B

Therefore, cos (A + A) = cos A cos A – sin A sin A

cos 2A = cos2A – sin2A

Since cos2A = 1 – sin2A, cos 2A = (1 – sin2A) - sin2A = 1 - 2sin2A

Or sin2A = 1 – cos2A, cos 2A = cos2A – (1 – cos2A) = 2cos2A – 1

Hence the 3 versions of the cosine double angle formula:

In the formula , let A = B

Hence the tangent double angle formula:

Example 1

Write the following as a single trigonometric ratio:

Example 2

Without using a calculator, find the value of

Example 3

Given that sin θ = ¼ and that θ is obtuse, find the exact value of sin 2θ

Ex 7B p 103

USING THE DOUBLE ANGLE FORMULAE TO PROVE IDENTITIES

Example

Prove the identitycosec θ – 2 cot 2θ cos θ = 2 sin θ

Ex 7C Q 1, 2, 7-13 p 106

TRIPLE ANGLE FORMULAE

HALF-ANGLE FORMULAE

These are useful in integration.
USING THE DOUBLE ANGLE FORMULAE TO SOLVE EQUATIONS

Example 1

Solve the equation3 sin 2θ = 4 tan θ for 0º ≤ θ ≤ 360º

Ex 7C Q 3, p 107

Example 2

Eliminate θ from the equations:

Note: θ is known as a parameter

Ex 7C Q 4-6, p 107

THE FORM “a cos θ ± b sin θ”

If you draw the graph of a cos θ + b sin θ it will have the same form as a sine or cosine graph.

It can be expressed in the form R sin (θ ± α) or R cos (θ ± α)

Example 1

Remember:

Ex 7D Q 1-7 p 111

This method can be used to find maximum or minimum values of expressions and to solve certain types of trig equations.

Example 2

Find the maximum value of 2 cos 2θ – 5 sin 2θ and the smallest positive value of θ for which it occurs.

Note; if necessary use a sketch to determine the max/min values

e.g.

Example 3

Solve the equation4 cos x + 3 sin x = 1 for 0º ≤ x ≤ 360º

Ex 7D Q 8-15 p 111

FACTOR FORMULAE

Replacing Q with –Q gives:

Hence:

sin P + sin Q = 2 x sin (semi-sum) cos (semi-difference)

sin P – sin Q = 2 x sin (semi-difference) cos (semi-sum)

Replacing Q with –Q gives exactly the same result, so this time we subtract the two starting equations:

Hence:

cos P + cos Q = 2 x cos (semi-sum) cos (semi-difference)

cos P – cos Q = - 2 x sin (semi-sum) sin (semi-difference)

Hence the 4 factor formulae:

Note the minus sign in the last formula

Example 1

Express as a sum or difference of sines:sin 4x cos 6x

Use

Example 2

Solve the equationcos 2θ + cos 3θ = 0 for 0 ≤ θ ≤ 2π

Ex 7E p 115

Mixed Ex 7F p 116

1

JMcC